Skip to main content
Log in

Two-dye and one- or two-quencher DNA probes for real-time PCR assay: synthesis and comparison with a TaqMan™ probe

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A typical TaqMan™ real-time PCR probe contains a 5′-fluorescent dye and a 3′-quencher. In the course of the amplification, the probe is degraded starting from the 5′-end, thus releasing fluorescent dye. Some fluorophores (including fluorescein) are known to be prone to self-quenching when located near each other. This work is aimed at studying dye–dye and dye–quencher interactions in multiply modified DNA probes. Twenty-one fluorogenic probes containing one and two fluoresceins (FAM), or a FAM–JOE pair, and one or two BHQ1 quenchers were synthesized using non-nucleoside reagents and “click chemistry” post-modification on solid phase and in solution. The probes were tested in real-time PCR using an ~300-bp-long natural DNA fragment as a template. The structural prerequisites for lowering the probe background fluorescence and increasing the end-plateau fluorescence intensity were evaluated and discussed.

Fluorogenic TaqMan probes with various modifications for real-time PCR

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994

    Article  CAS  Google Scholar 

  2. Arya M, Shergill IS, Williamson M, Gommersall L, Arya N, Patel HRH (2005) Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn 5:209–219

    Article  CAS  Google Scholar 

  3. Ranasinghe RT, Brown T (2005) Fluorescence based strategies for genetic analysis. Chem Commun 5487–5502 pp

    Article  Google Scholar 

  4. Gibson NJ (2006) The use of real-time PCR methods in DNA sequence variation analysis. Clin Chim Acta 363:32–47

    Article  CAS  Google Scholar 

  5. Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonák J, Lind K, Sindelka R, Sjöback R, Sjögreen B, Strömbom L, Ståhlberg A, Zoric N (2006) The real-time polymerase chain reaction. Mol Asp Med 27:95–125

    Article  CAS  Google Scholar 

  6. Deepak SA, Kottapalli KR, Rakwal R, Oros G, Rangappa KS, Iwahashi H, Masuo Y, Agrawal GK (2007) Real-time PCR: revolutionizing detection and expression analysis of genes. Curr Genomics 8:234–251

    Article  CAS  Google Scholar 

  7. Overbergh L, Giulietti A-P, Valckx D, Mathieu C (2010) Real-time polymerase chain reaction. In: Patrinos GP, Ansorge WJ (eds) Molecular diagnostics, 2nd edn. Academic, San Diego, pp 87–105

    Chapter  Google Scholar 

  8. Gašparič MB, Tengs T, La Paz JL, Holst-Jensen A, Pla M, Esteve T, Žel J, Gruden K (2010) Comparison of nine different real-time PCR chemistries for qualitative and quantitative applications in GMO detection. Anal Bioanal Chem 396:2023–2029

    Article  Google Scholar 

  9. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  10. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C-T method. Nat Protoc 3:1101–1108

    Article  CAS  Google Scholar 

  11. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandersompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  Google Scholar 

  12. Boggy GJ, Woolf PJ (2010) A mechanistic model of PCR for accurate quantification of quantitative PCR data. PLoS One 5:e12355

    Article  Google Scholar 

  13. Holland PM, Abramson RD, Watson R, Gelfand DH (1991) Detection of specific polymerase chain reaction product by utilizing the 5′→3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A 88:7276–7280

    Article  CAS  Google Scholar 

  14. Lee LG, Connell CR, Bloch W (1993) Allelic discrimination by nick-translation PCR with fluorogenic probes. Nucl Acids Res 21:3761–3766

    Article  CAS  Google Scholar 

  15. Livak KJ, Flood SJA, Marmaro J (1996) Method for detecting nucleic acid amplification using self-quenching fluorescence probe. US Pat 5:538,848

    Google Scholar 

  16. Livak KJ, Flood SJA, Marmaro J, Giusti W, Deetz K (1995) Oligonuceotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl 4:357–362

    CAS  Google Scholar 

  17. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, Singapore

    Book  Google Scholar 

  18. Proudnikov D, Yuferov V, Zhou Y, LaForge KS, Ho A, Kreek MJ (2003) Optimizing primer–probe design for fluorescent PCR. J Neurosci Methods 123:31–45

    Article  CAS  Google Scholar 

  19. Stakheev AA, Ryazantsev DY, Gagkaeva TY, Zavriev SK (2011) PCR detection of Fusarium fungi with similar profiles of the produced mycotoxins. Food Control 22:462–468

    Article  CAS  Google Scholar 

  20. Wilson PM, LaBonte M, Russell J, Louie S, Ghobrial AA, Ladner RD (2011) A novel fluorescence-based assay for the rapid detection and quantification of cellular deoxyribonucleoside triphosphates. Nucl Acids Res 39:e112

    Article  CAS  Google Scholar 

  21. AlleLogic Biosciences Corp. http://www.allelogic.com/technology.htm. Accessed 12 June 2012

  22. Mao F, Xin X (2010) Oligonucleotides labeled with a plurality of fluorophores. US Patent 7,667,024

  23. Li X, Zhang J, Zhang Z, Zhou C (2010) Relationship between single nucleotide polymorphism of the equilibrative nucleoside transporter ENT3 and susceptibility to lung cancer. Zhongguo Fei Ai Za Zhi (Clin J Lung Cancer, China) 13:458–463 (in Chinese). PMID: 20677642

    Google Scholar 

  24. Wu DS, Shen JZ, Zhou XQ, Shen SF, Wu XM (2010) The establishment and evaluation of diagnostic accuracy of AllGlo™ probe-based techniques for invasive aspergillosis. Zhonghua Nei Ke Za Zhi (Chinese J Intern Med, China). 49:142–145 (in Chinese). PMID: 20356513

  25. Feng Z, Yu X, Lu Z, Geng D, Zhang L, Chen S (2011) Rapid detection of the hepatitis B virus YMDD mutant using AllGlo™ probes. Clin Chim Acta 412:1018–1021

    Article  CAS  Google Scholar 

  26. Cheng J, Ha M, Wang Y, Sun J, Chen J, Wang Y, Chunyan T (2012) A C118T polymorphism of ERCC1 and response to cisplatin chemotherapy in patients with lata-stage non-small cell lung cancer. J Cancer Res Clin Oncol 138:231–238

    Article  CAS  Google Scholar 

  27. Gramlich PME, Wirges CT, Manetto A, Carell T (2008) Postsynthetic DNA modification through the copper-catalyzed azide–alkyne cycloaddition reaction. Angew Chem Int Ed 47:8350–8358

    Article  CAS  Google Scholar 

  28. Amblard F, Cho JH, Schinazi RF (2009) Cu(I)-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition reaction in nucleoside, nucleotide, and oligonucleotide chemistry. Chem Rev 109:4207–4220

    Article  CAS  Google Scholar 

  29. El-Sagheer AH, Brown T (2010) Click chemistry with DNA. Chem Soc Rev 39:1388–1405

    Article  CAS  Google Scholar 

  30. Ustinov AV, Stepanova IA, Dubnyakova VV, Zatsepin TS, Nozhevnikova EV, Korshun VA (2010) Modification of nucleic acids using [3+2]-dipolar cycloaddition of azides and alkynes. Russ J Bioorg Chem 36:401–445

    Article  CAS  Google Scholar 

  31. Gierlich J, Burley GA, Gramlich PME, Hammond DM, Carell T (2006) Click chemistry as a reliable method for the high-density postsynthetic functionalization of alkyne-modified DNA. Org Lett 8:3639–3642

    Article  CAS  Google Scholar 

  32. Seela F, Sirivolu VR (2007) Nucleosides and oligonucleotides with diynyl side chains: base pairing and functionalization of 2′-deoxyuridine derivatives by the copper(I)-catalyzed alkyne–azide ‘click’ cycloaddition. Helv Chim Acta 90:535–552

    Article  CAS  Google Scholar 

  33. Kvach MV, Tsybulsky DA, Ustinov AV, Stepanova IA, Bondarev SL, Gontarev SV, Korshun VA, Shmanai VV (2007) 5(6)-Carboxyfluorescein revisited: new protecting group, separation of isomers, and their spectral properties on oligonucleotides. Bioconjug Chem 18:1691–1696

    Article  CAS  Google Scholar 

  34. Tsybulsky DA, Kvach MV, Stepanova IA, Korshun VA, Shmanai VV (2012) 4′,5′-Dichloro-2′,7′-dimethoxy-5(6)-carboxyfluorescein (JOE): synthesis and spectral properties of oligonucleotide conjugates. J Org Chem 77:977–984

    Article  CAS  Google Scholar 

  35. Cook RM, Lyttle M, Dick D (2001) Dark quenchers for donor-acceptor energy transfer. Patent PCT WO 01/86001

  36. Haralambidis J, Duncan L, Angus K, Tregear GW (1990) The synthesis of polyamide–oligonucleotide conjugate molecules. Nucl Acids Res 21:3761–3766

    Google Scholar 

  37. Johansson MK, Fidder H, Dick D, Cook RM (2002) Intramolecular dimers: a new strategy to fluorescence quenching in dual-labeled oligonucleotide probes. J Am Chem Soc 124:6950–6956

    Article  CAS  Google Scholar 

  38. Johansson MK, Cook RM (2003) Intramolecular dimers: a new strategy to fluorescence quenched probes. Chem Eur J 9:3644–3741

    Google Scholar 

  39. Johansson MK (2006) Choosing reporter–quencher pairs for efficient quenching through formation of intramolecular dimers. Methods Mol Biol 335:17–29

    CAS  Google Scholar 

  40. Nakayama S, Yan L, Sintim HO (2008) Junction probes–sequence specific detection of nucleic acids via template enhanced hybridization processes. J Am Chem Soc 130:12560–12561

    Article  CAS  Google Scholar 

  41. Vallée-Bélisle A, Bonham AJ, Reich NO, Ricci F, Plaxco KW (2011) Transcription factor beacons for the quantitative detection of DNA binding activity. J Am Chem Soc 133:13836–13839

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by the Molecular and Cellular Biology Program of the Russian Academy of Sciences, Russian Foundation for Basic Research (project no. 10-04-00998), and the Ministry of Industry and Trade of the Russian Federation (contract no. 11411.0810200.13.B24). The authors are grateful to Irina A. Stepanova and Elena V. Nozhevnikova for their help in data analysis and Tatyana E. Chernichko for the reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vladimir A. Korshun or Sergey K. Zavriev.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.38 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryazantsev, D.Y., Tsybulsky, D.A., Prokhorenko, I.A. et al. Two-dye and one- or two-quencher DNA probes for real-time PCR assay: synthesis and comparison with a TaqMan™ probe. Anal Bioanal Chem 404, 59–68 (2012). https://doi.org/10.1007/s00216-012-6114-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6114-4

Keywords

Navigation