Skip to main content

Advertisement

Log in

Comparison of nine different real-time PCR chemistries for qualitative and quantitative applications in GMO detection

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Several techniques have been developed for detection and quantification of genetically modified organisms, but quantitative real-time PCR is by far the most popular approach. Among the most commonly used real-time PCR chemistries are TaqMan probes and SYBR green, but many other detection chemistries have also been developed. Because their performance has never been compared systematically, here we present an extensive evaluation of some promising chemistries: sequence-unspecific DNA labeling dyes (SYBR green), primer-based technologies (AmpliFluor, Plexor, Lux primers), and techniques involving double-labeled probes, comprising hybridization (molecular beacon) and hydrolysis (TaqMan, CPT, LNA, and MGB) probes, based on recently published experimental data. For each of the detection chemistries assays were included targeting selected loci. Real-time PCR chemistries were subsequently compared for their efficiency in PCR amplification and limits of detection and quantification. The overall applicability of the chemistries was evaluated, adding practicability and cost issues to the performance characteristics. None of the chemistries seemed to be significantly better than any other, but certain features favor LNA and MGB technology as good alternatives to TaqMan in quantification assays. SYBR green and molecular beacon assays can perform equally well but may need more optimization prior to use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gruere GP, Rao SR (2007) AgBioForum 10:51–64

    Google Scholar 

  2. James C (2009) Global status of commercialized biotech/GM crops 2008. ISAAA brief 39, 1–20. Ithaca, NY

  3. Holst-Jensen A, Ronning SB, Lovseth A, Berdal KG (2003) Analytical and Bioanalytical Chemistry 375:985–993

    CAS  Google Scholar 

  4. Holst-Jensen A (2007) Sampling, detection, identification and quantification of genetically modified organisms (GMOs). In: Food Toxicants Analysis. Techniques, Strategies and Developments. Elsevier, Amsterdam, Netherlands

  5. Gene Quantification [http://gene-quantification.info/]. 24-7-2009

  6. Bustin SA (2005) Expert Rev Mol Diagn 5:493–498

    Article  CAS  Google Scholar 

  7. Hernandez M, Esteve T, Prat S, Pla M (2004) J Cereal Sci 39:99–107

    Article  CAS  Google Scholar 

  8. Terry CF, Shanahan DJ, Ballam LD, Harris N, McDowell DG, Parkes HC (2002) J AOAC Int 85:938–944

    CAS  Google Scholar 

  9. Andersen CB, Holst-Jensen A, Berdal KG, Thorstensen T, Tengs T (2006) J Agric Food Chem 54:9658–9663

    Article  CAS  Google Scholar 

  10. Buh GM, Cankar K, Zel J, Gruden K (2008) BMC Biotechnol 8:26

    Article  Google Scholar 

  11. La Paz JL, Esteve T, Pla M (2007) J Agric Food Chem 55:4312–4318

    Article  Google Scholar 

  12. Higuchi R, Fockler C, Dollinger G (1993) Watson R. Biotechnology (NY) 11:1026–1030

    Article  CAS  Google Scholar 

  13. Schneeberger C, Speiser P, Kury F, Zeillinger R (1995) PCR Methods Appl 4:234–238

    CAS  Google Scholar 

  14. Ririe KM, Rasmussen RP, Wittwer CT (1997) Anal Biochem 245:154–160

    Article  CAS  Google Scholar 

  15. Giglio S, Monis PT, Saint CP (2003) Nucleic Acids Res 31:e136

    Article  Google Scholar 

  16. Karsai A, Muller S, Platz S, Hauser MT (2002) Biotechniques 32:790–796

    CAS  Google Scholar 

  17. Zipper H, Brunner H, Bernhagen J, Vitzthum F (2004) Nucleic Acids Res 32:e103

    Article  Google Scholar 

  18. Nazarenko I, Pires R, Lowe B, Obaidy M, Rashtchian A (2002) Nucleic Acids Res 30:2089–2195

    Article  CAS  Google Scholar 

  19. Sherrill CB, Marshall DJ, Moser MJ, Larsen CA, Daude-Snow L, Jurczyk S, Shapiro G, Prudent JR (2004) J Am Chem Soc 126:4550–4556

    Article  CAS  Google Scholar 

  20. Nazarenko IA, Bhatnagar SK, Hohman RJ (1997) Nucleic Acids Res 25:2516–2521

    Article  CAS  Google Scholar 

  21. Holland PM, Abramson RD, Watson R, Gelfand DH (1991) Proc Natl Acad Sci USA 88:7276–7280

    Article  CAS  Google Scholar 

  22. Kutyavin IV, Afonina IA, Mills A, Gorn VV, Lukhtanov EA, Belousov ES, Singer MJ, Walburger DK, Lokhov SG, Gall AA, Dempcy R, Reed MW, Meyer RB, Hedgpeth J (2000) Nucleic Acids Res 28:655–661

    Article  CAS  Google Scholar 

  23. Costa JM, Ernault P, Olivi M, Gaillon T, Arar K (2004) Clin Biochem 37:930–932

    Article  CAS  Google Scholar 

  24. Koshkin AA, Singh SK, Nielsen P, Rajwanshi VK, Kumar R, Meldgaard M, Olsen CE, Wengel J (1998) Tetrahedron 54:3607–3630

    Article  CAS  Google Scholar 

  25. Duck P, Varado-Urbina G, Burdick B, Collier B (1990) Biotechniques 9:142–148

    CAS  Google Scholar 

  26. Tyagi S, Kramer FR (1996) Nat Biotechnol 14:303–308

    Article  CAS  Google Scholar 

  27. European Network of GMO Laboratories (ENGL). Definition of Minimum Performance Requirements for Analytical Methods of GMO Testing (2008). http://gmo-crl.jrc.ec.europa.eu/ 2009

  28. Santangelo P, Nitin N, Bao G (2006) Ann Biomed Eng 34:39–50

    Article  Google Scholar 

  29. Mao F, Leung WY, Xin X (2007) BMC Biotechnol 7:76

    Article  Google Scholar 

  30. Monis PT, Giglio S, Saint CP (2005) Anal Biochem 340:24–34

    Article  CAS  Google Scholar 

  31. AlleLogic Biosciences Corp [http://www.allelogic.com/]. 1-8-2009

  32. Christensen UB (2008) Methods Mol Biol 429:137–160

    Article  CAS  Google Scholar 

  33. ISO 21569:2005. Foodstuffs—Methods of analysis for the detection of genetically modified organisms and derived products—Qualitative nucleic acid based methods. 1–69. 20-6-2005. Geneva, Switzerland; 2005

  34. Pfaffl MW (2001) Nucleic Acids Res 29:e45

    Article  CAS  Google Scholar 

  35. ISO 24276:2006. Foodstuffs—Methods of analysis for the detection of genetically modified organisms and derived products—General requirements and definitions. 1–16. 20-6-2005. Geneva, Switzerland; 2005

  36. Berdal KG, Holst-Jensen A (2001) Eur Food Res Technol 213:432–438

    Article  CAS  Google Scholar 

  37. Hernandez M, Pla M, Esteve T, Prat S, Puigdomenech P, Ferrando A (2003) Transgenic Res 12:179–189

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was financially supported by the European Commission through the Integrated Project Co-Extra, Contract No. 007158, under the 6th framework programme, priority 5, food quality and safety and Slovenian research agency programme Plant biotechnology and systems biology P4-0165. For help with graphical illustrations we kindly thank Damijan Gašparič, MArch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meti Buh Gašparič.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 515 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buh Gašparič, M., Tengs, T., La Paz, J.L. et al. Comparison of nine different real-time PCR chemistries for qualitative and quantitative applications in GMO detection. Anal Bioanal Chem 396, 2023–2029 (2010). https://doi.org/10.1007/s00216-009-3418-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3418-0

Keywords

Navigation