Skip to main content
Log in

Development and validation of a comprehensive two-dimensional gas chromatography–mass spectrometry method for the analysis of phytosterol oxidation products in human plasma

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Phytosterol oxidation products (POPs) have been suggested to exert adverse biological effects similar to, although less severe than, their cholesterol counterparts. For that reason, their analysis in human plasma is highly relevant. Comprehensive two-dimensional gas chromatography (GC×GC) coupled with time-of-flight mass spectrometry (TOF-MS) has been proven to be an extremely powerful separation technique for the analysis of very low levels of target compounds in complex mixtures including human plasma. Thus, a GC×GC/TOF-MS method was developed and successfully validated for the simultaneous quantification of ten POPs in human plasma. The calibration curves for each compound showed correlation coefficients (R 2) better than 0.99. The detection limits were below 0.1 ng mL−1. The recovery data were between 71.0% and 98.6% (RSDs <10% for all compounds validated). Good results were obtained for within- and between-day repeatability, with most values being below 10%. In addition, non-targeted sterol metabolites were also identified with the method. The concentrations of POPs found in human plasma in the current study are between 0.3 and 4.5 ng mL−1, i.e., 10–100 times lower than the typical values found for cholesterol oxidation products.

Extracted regions of GC×GC/TOF-MS chromatograms displaying derivatives of sterol oxidation products and sterols for plasma samples

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Katan MB, Grundy SM, Jones P, Law M, Miettinen T, Paoletti R (2003) Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. Mayo Clin Proc 78:965–978

    CAS  Google Scholar 

  2. Berger A, Jones PJH, Abumweis SS (2004) Plant sterols: factors affecting their efficacy and safety as functional food ingredients. Lipids Health Dis 3:5

    Article  Google Scholar 

  3. Demonty I, Ras RT, van der Knaap HC, Duchateau GS, Meijer L, Zock PL, Geleijnse JM, Trautwein EA (2009) Continuous dose–response relationship of the LDL-cholesterol-lowering effect of phytosterol intake. J Nutr 139(2):271–284

    CAS  Google Scholar 

  4. Cercaci L, Rodríguez-Estrada MT, Lercker G, Decker EA (2006) Phytosterol oxidation in oil-in-water emulsions and bulk oil. Food Chem 102:161–167

    Article  Google Scholar 

  5. Zhang X, Julien-David D, Miesch M, Raul F, Geoffroy P, Aoude-Werner D, Ennhanar S, Marchioni E (2006) Quantitative analysis of β-sitosterol oxides induced in vegetable oils by natural sunlight, artificially generated light and irradiation. J Agric Food Chem 54:5410–5415

    Article  CAS  Google Scholar 

  6. Schroepfer GJ Jr (2000) Oxysterols: modulators of cholesterol metabolism and others processes. Phys Rev 80:361–554

    CAS  Google Scholar 

  7. Leonarduzzi G, Sottero B, Poli G (2002) Oxidized products of cholesterol: dietary and metabolic origin and proatherosclerotic effects (review). J Nutr Biochem 13:700–710

    Article  CAS  Google Scholar 

  8. Lordan S, Mackrill JJ, O’Brien NM (2009) Oxysterols and mechanisms of apoptotic signalling: implications in the pathologies of degenerative diseases. J Nutr Biochem 20:321–336

    Article  CAS  Google Scholar 

  9. Roussi S, Winter A, Gossé F, Werner D, Zhang X, Marchioni E, Geoffrroy P, Miesch M, Raul F (2005) Different apoptotic mechanisms are involved in the antiproliferative effects of 7β-hydroxysitosterol and 7β-hydroxycholesterol in human colon cancer cells. Cell Death Diff 12:128–135

    Article  CAS  Google Scholar 

  10. Abramsson-Zetterberg L, Svensson M, Johnsson L (2007) No evidence of genotoxic effect in vivo of phytosterol oxidation products triols and epoxide. Toxicol Lett 173:132–139

    Article  CAS  Google Scholar 

  11. Grandgirard A, Sergiel JP, Nour M, Demaison-Meloche J, Giniès C (1999) Lymphatic absorption of phytosterol oxides in rats. Lipids 34(6):563–569

    Article  CAS  Google Scholar 

  12. Tomoyori H, Kawata Y, Higuchi T, Ichi I, Sato H, Sato M, Ikeda I, Imaizumi K (2004) Phytosterol oxidation products are absorbed in the intestinal lymphatics in rats but do not accelerate atherosclerosis in apoliprotein E-deficient mice. J Nutr (Biochem Mol Actions Nutr) 34:1690–1696

    Google Scholar 

  13. Hovenkamp E, Demonty I, Plat J, Lütjohann D, Mensink RP, Trautwein EA (2008) Biological effects of oxidized phytosterols: a review of the current knowledge. Prog Lipid Res 47:37–49

    Article  CAS  Google Scholar 

  14. Grandgirard A, Martine L, Demaison L, Cordelet C, Joffre C, Berdeaux O, Semon E (2004) Oxyphytosterols are present in plasma of healthy human subjects. Br J Nutr 91:101–106

    Article  CAS  Google Scholar 

  15. Menéndez-Carreño M, García-Herreros AI, Ansorena D (2008) Validation of a gas chromatography–mass spectrometry method for the simultaneous analysis of cholesterol and phytosterol oxidation products in serum. J Chromatogr B 864:61–68

    Article  Google Scholar 

  16. Husche C, Weigärtner O, Petterson H, Vanmierlo T, Böhm M, Laufs U, Lütjohann D (2011) Validation of an isotope dilution gas chromatography–mass spectrometry method for analysis of 7-oxygenated campesterol and sitosterol in human serum. Chem Phys Lipids 164:425–431

    Article  CAS  Google Scholar 

  17. Guardiola F, Bou R, Boatella J, Codony R (2004) Analysis of sterol oxidation products in foods. J AOAC Int 87:441–466

    CAS  Google Scholar 

  18. Kemmo S, Soupas L, Lampi AM, Piironen V (2005) Formation and decomposition of stigmasterol hydroxyperoxides and secondary oxidation products during thermo-oxidation. Eur J Lipid Sci Tech 107:805–814

    Article  CAS  Google Scholar 

  19. Griffiths WJ, Wang Y (2009) Analysis of neurosterols by GC-MS and LC-MS/MS. J Chromatogr B 877(26):2778–2805

    Article  CAS  Google Scholar 

  20. Janssen HG, Steenbergen H, de Koning S (2009) The role of comprehensive chromatography in the characterization of edible oils and fats. Eur J Lipid Sci Tech 111:1171–1184

    Article  CAS  Google Scholar 

  21. Ryan D, Morrison P, Marriott P (2005) Orthogonality considerations in comprehensive two-dimensional gas chromatography. J Chromatogr A 1071(1–2):47–53

    Article  CAS  Google Scholar 

  22. Dallüge J, van Rijn M, Beens J, Vreuls RJJ, Brinkman UATh (2002) Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection applied to the determination of pesticides in food extracts. J Chromatogr A 965(1–2):207–217

    Article  Google Scholar 

  23. Mitrevski BS, Brenna JT, Zhang Y, Marriott PJ (2008) Application of comprehensive two-dimensional gas chromatography to sterols analysis. J Chromatogr A 1214(1–2):134–142

    CAS  Google Scholar 

  24. Mitrevski BS, Wilairat P, Marriott PJ (2009) Evaluation of World Anti-Doping Agency criteria for anabolic agent analysis by using comprehensive two-dimensional gas chromatography–mass spectrometry. Anal Bioanal Chem 396(7):2503–2511

    Article  Google Scholar 

  25. Lankinen M, Schwab U, Seppanen-Laakso T, Ismo M, Juntunen K, Mykkanen H, Poutanen K, Gylling H, Oresic M (2011) Metabolomic analysis of plasma metabolites that may mediate effects of rye bread on satiety and weight maintenance in postmenopausal women. J Nutr 141:31–36

    Article  CAS  Google Scholar 

  26. Louter AJ (2004) Determination of plant sterol oxidation products in plant sterol enriched spreads, fat blends and plant sterol concentrates. J AOAC Int 87(2):485–492

    CAS  Google Scholar 

  27. Guardiola F, Codony R, Rafecas M, Boatella J (1995) Comparison of three methods for the determination of oxysterols in spray-dried egg. J Chromatogr A 705:289–304

    Article  CAS  Google Scholar 

  28. ICH Harmonised tripartite guideline. Validation of analytical procedures: text and methodology Q2 (R1) (1996). International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use

  29. Mitrevski BJ, Wilairat P, Marriott PJ (2010) Comprehensive two-dimensional gas chromatography improves separation and identification of anabolic agents in doping control. J Chromatogr A 1217:127–135

    Article  CAS  Google Scholar 

  30. Aringer L, Eneroth P, Nordström L (1976) Side-chain hydroxylation of cholesterol, campesterol and beta-sitosterol in rat-liver mitochondria. J Lipid Res 17:263–272

    CAS  Google Scholar 

  31. Brown AJ, Jessup W (2009) Oxysterols: sources, cellular storage and metabolism, and new insights into their roles in cholesterol homeostasis. Mol Aspects Med 30(3):111–122

    Article  CAS  Google Scholar 

  32. Kallio M, Hyötyläinen T (2010) Simple calibration procedure for comprehensive two-dimensional gas chromatography. J Chromatogr A 1200(2):264–267

    Article  Google Scholar 

  33. Laitinen T, Herrero Martín S, Parshintsev J, Hyötyläinen T, Hartonen K, Riekkola M-L, Kulmala M, Pérez Pavón JL (2010) Determination of organic compounds from wood combustion aerosol nanoparticles by different gas chromatographic systems and by aerosol mass spectrometry. J Chromatogr A 1217(1):151–159

    Article  CAS  Google Scholar 

  34. Kumar BS, Chung BC, Lee YJ, Yi HJ, Byung Lee BH, Jung BH (2010) Gas chromatography–mass spectrometry-based simultaneous quantitative analytical method for urinary oxysterols and bile acids in rats. J Steroid Biochem Mol Biol 121(3–5):556–564

    Google Scholar 

  35. Razzazi-Fazeli E, Kleineisen S, Luf W (2000) Determination of cholesterol oxides in processed food using high-performance liquid chromatography–mass spectrometry with atmospheric pressure chemical ionisation. J Chromatogr A 896:321–334

    Article  CAS  Google Scholar 

  36. DeBarber AE, Lütjohann D, Merkens L, Steiner RD (2008) Liquid chromatography–tandem mass spectrometry determination of plasma 24S-hydroxycholesterol with chromatographic separation of 25-hydroxycholesterol. Anal Biochem 381(1):151–153

    Article  CAS  Google Scholar 

  37. Honda A, Miyazaki T, Ikegami T, Iwamoto J, Yamashita K, Numazawa M, Matsuzaki Y (2010) Highly sensitive and specific analysis of sterol profiles in biological samples by HPLC-ESI-MS/MS. J Chromatogr A 1217(1):151–159

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Menéndez-Carreño.

Additional information

Published in the special issue Comprehensive Multidimensional Separations with Guest Editors James Harynuk and Philip Marriott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menéndez-Carreño, M., Steenbergen, H. & Janssen, HG. Development and validation of a comprehensive two-dimensional gas chromatography–mass spectrometry method for the analysis of phytosterol oxidation products in human plasma. Anal Bioanal Chem 402, 2023–2032 (2012). https://doi.org/10.1007/s00216-011-5432-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5432-2

Keywords

Navigation