Skip to main content
Log in

A theoretical investigation of water–solute interactions: from facial parallel to guest–host structures

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Encapsulation of small (bio-)organic molecules within water cages is governed by a subtle equilibrium between water–water and water–solute interactions. The competition between the formation of exohedral and endohedral complexes is investigated. The first step prior to a theoretical characterization of interactions involved in such complexes lies in the judicious choice of a level of theory. The β-propiolactone (BPL), a solute for which the micro-hydration was recently characterized by means of high resolution microwave spectroscopy (Angew. Chem. 2015, 127, 993), was selected for the present study, and a calibration step is carried out. It is shown that the dispersion-corrected density functional theory (DFT-D) suitably reproduce the geometric, energetic and spectroscopic features of the BPL:(H2O)1–5 complexes. The experimentally deduced structures of the BPL:(H2O)4,5 species are fully understood in terms of the maximization of interactions between complementary sites in the MESPs. DFT-D calculations followed by the topological analysis within the Quantum Theory of Atoms in Molecules framework have shown that the solute could efficiently interact with (H2O)6,10 clusters in a similar manner that the (H2O)4,5 clusters do. The interaction of the solute with two larger water clusters is further investigated. The exohedral and endohedral BPL:(H2O)20 isomers are close in energy with each other, whereas the formation of an inclusion complex is energetically more favored than the facial interaction in the case of the BPL:(H2O)24 cluster. The topological analysis suggests that the substantial energetic stability is due to interactions between the solute and almost all oxygen atoms of the water cage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rodgers MT, Armentrout PB (2016) Chem Rev 116:5642–5687

    Article  CAS  Google Scholar 

  2. Hobza P, Müller-Dethlefs K (2010) Non-covalent interactions: theory and experiment (No. 2). Royal Society of Chemistry

  3. Subha Mahadevi A, Narahari Sastry G (2016) Chem Rev 116:2775–2825

    Article  Google Scholar 

  4. Wei Z, Chen D, Zhao H, Li Y, Zhu J, Liu B (2014) J Chem Phys 140:085103_1–085103_10

    Google Scholar 

  5. Bouchet A, Schìtz M, Dopfer O (2016) Chem Phys Chem 17:232–243

    Article  CAS  Google Scholar 

  6. Feng G, Gou Q, Evangelisti L, Spada L, Blanco S, Caminati W (2016) Phys Chem Chem Phys 18:23651–23656

    Article  CAS  Google Scholar 

  7. Fogarasi G, Szalay PG (2015) Phys Chem Chem Phys 17:29880–29890

    Article  CAS  Google Scholar 

  8. Chen D, Wei Z, Liu B (2015) J Mol Model 21:234–242

    Article  Google Scholar 

  9. Riffet V, Bouchoux G, Frison G (2015) J Phys Chem B 119:11527–11539

    Article  CAS  Google Scholar 

  10. Pérez C, Zaleski DP, Seifert NA, Temelso B, Shields GC, Kisiel Z, Pate BH (2014) Angew Chem Int Ed 53:14368–14372

    Article  Google Scholar 

  11. Dargent D, Zins EL, Madebène B, Alikhani ME (2016) Theor Chem Acc 135:32_1–32_12

    Article  Google Scholar 

  12. Zelenẏ T, Hobza P, Kabeláč M (2009) Phys Chem Chem Phys 11:3430–3435

    Article  Google Scholar 

  13. Calvo F, Bacchus-Montabonel MC, Clavaguéra C (2016) J Phys Chem A 120:2380–2389

    Article  CAS  Google Scholar 

  14. Miliordos E, Aprà E, Xantheas SS (2016) J Chem Theory Comput 12:4004–4014

    Article  Google Scholar 

  15. Park SS, Lee S, Won YS, Ahn YJ (2014) Chem Phys 441:128–136

    Article  CAS  Google Scholar 

  16. Kumar P, Sathyamurthy N (2011) J Phys Chem A 115:14276–14281

    Article  CAS  Google Scholar 

  17. Bader RFW (1990) Atoms in molecules. a quantum theory. Clarendon, Oxford

    Google Scholar 

  18. Alavi S, Susilo R, Ripmeester JA (2009) J Chem Phys 130:174501_1–174501_8

    Article  Google Scholar 

  19. Gadre SR, Yeole SD, Sahu N (2014) Chem Rev 114:12132–12173

    Article  CAS  Google Scholar 

  20. Murray JS, Sen K (1996) Molecular electrostatic potentials: concepts and applications. Elsevier Science, Amsterdam

    Google Scholar 

  21. Kolář MH, Hobza P (2016) Chem Rev 116:5155–5187

    Article  Google Scholar 

  22. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) J Mol Model 18:541–548

    Article  CAS  Google Scholar 

  23. Bauz A, Mooibroek TJ, Frontera A (2015) Chem Phys Chem 16:2496–2517

    Article  Google Scholar 

  24. Remya K, Suresh CH (2015) Phys Chem Chem Phys 17:27035–27044

    Article  CAS  Google Scholar 

  25. Kumar A, Gadre SR, Mohan N, Suresh CH (2014) J Phys Chem A 118:526–532

    Article  CAS  Google Scholar 

  26. Singh G, Verma R, Gadre SR (2015) J Phys Chem A 119:13055–13063

    Article  CAS  Google Scholar 

  27. Prakash M, Subramanian V, Gadre SR (2009) J Phys Chem A 113:12260–12275

    Article  CAS  Google Scholar 

  28. Misquitta AJ, Stone AJ, Price SL (2008) J Chem Theory Comput 4:19–32

    Article  CAS  Google Scholar 

  29. Stone A (2013) The theory of intermolecular forces. OUP, Oxford

    Book  Google Scholar 

  30. Gadre SR, Pundlik SS (1997) J Phys Chem B 101:3298–3303

    Article  CAS  Google Scholar 

  31. Gadre SR, Kumar A (2015) In: Scheiner S (ed) Noncovalent forces. Springer, Berlin

    Google Scholar 

  32. Pathak RK, Gadre SR (1990) J Chem Phys 93:1770–1773

    Article  CAS  Google Scholar 

  33. Zins EL, Alikhani ME (2016) Mol Phys 114:1317–1325

    Article  CAS  Google Scholar 

  34. Copeland KL, Tschumper GS (2012) J Chem Theory Comput 8:1646–1656

    Article  CAS  Google Scholar 

  35. Pérez C, Neill JL, Muckle MT, Zaleski DP, Peña I, Lopez JC, Alonso JL, Pate BH (2015) Angew Chem Int Ed 54:979–982

    Article  Google Scholar 

  36. Koch U, Popelier PLA (1995) J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  37. Popelier PLA (1998) J Phys Chem 102:1873–1878

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision E.01. Gaussian Inc, Wallingford CT

    Google Scholar 

  39. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104_1–154104_19

    Article  Google Scholar 

  40. Lee C, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  41. Grimme S (2006) J Chem Phys 124:034108_1–034108_16

    Article  Google Scholar 

  42. Vydrov OA, Scuseria GE (2006) J Chem Phys 125:234109_1–234109_9

    Google Scholar 

  43. Vydrov OA, Heyd J, Krukau A, Scuseria GE (2006) J Chem Phys 125:074106_1–074106_9

    Google Scholar 

  44. Vydrov OA, Scuseria GE, Perdew JP (2007) J Chem Phys 126:154109_1–154109_9

    Article  Google Scholar 

  45. Keith TA, AIMAll (Version 14.10.27), TK Gristmill Software, Overland Park KS, USA, 2014 (aim.tkgristmill.com)

  46. Liu Y, Zhao J, Li F, Chen Z (2013) J Comput Chem 34:121–131

    Article  Google Scholar 

  47. Miliordos E, Aprà E, Xantheas SS (2013) J Chem Phys 139:114302_1–114302_13

    Article  Google Scholar 

  48. Shields RM, Temelso B, Archer KA, Morrell TE, Shields GC (2010) J Phys Chem A 114:11725–11737

    Article  CAS  Google Scholar 

  49. Fanourgakis GS, Aprà E, Xantheas SS (2004) J Chem Phys 121:2655–2663

    Article  CAS  Google Scholar 

  50. Furtado JP, Rahalkar AP, Shanker S, Bandyopadhyay P, Gadre SR (2012) J Phys Chem Lett 3:2253–2258

    Article  CAS  Google Scholar 

  51. Parkkinen P, Riikonen S, Halonen L (2013) J Phys Chem A 117:9985–9998

    Article  CAS  Google Scholar 

  52. Mezei OD, Ruzsinszky A, Csonka GI (2016) J Chem Theory Comput 12:4222–4232

    Article  CAS  Google Scholar 

  53. Kabrede H, Hentschke R (2003) J Phys Chem B 107:3914–3920

    Article  CAS  Google Scholar 

  54. Takeuchi H (2008) J Chem Inf Model 48:2226–2233

    Article  CAS  Google Scholar 

  55. Kirov MV, Fanourgakis GS, Xantheas SS (2008) Chem Phys Lett 461:180–188

    Article  CAS  Google Scholar 

  56. Yoo S, Kirov MV, Xantheas SS (2009) J Am Chem Soc 131:7564–7566

    Article  CAS  Google Scholar 

  57. Willow SY, Xantheas SS (2012) Chem Phys Lett 525–526:13–18

    Article  Google Scholar 

  58. Ramya KR, Venkatnathan A (2012) J Phys Chem A 116:7742–7745

    Article  CAS  Google Scholar 

  59. Sloan ED, Koh C (2007) Clathrate Hydrates of Natural Gases. CRC Press, Taylor & Francis Group, Boca Raton, London

    Book  Google Scholar 

Download references

Acknowledgements

We thank the UPMC labex MiChem for providing Ph.D. financial support for M. Kalai. We are grateful to IDRIS for providing computer facilities (Grant No. i2016087615).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Esmaïl Alikhani.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Published as part of the special collection of articles derived from the 10th Congress on Electronic Structure: Principles and Applications (ESPA-2016).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalai, C., Zins, EL. & Alikhani, M.E. A theoretical investigation of water–solute interactions: from facial parallel to guest–host structures. Theor Chem Acc 136, 48 (2017). https://doi.org/10.1007/s00214-017-2074-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2074-2

Keywords

Navigation