Skip to main content
Log in

Event-related potentials reflect impaired temporal interval learning following haloperidol administration

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background

Signals carried by the mesencephalic dopamine system and conveyed to anterior cingulate cortex are critically implicated in probabilistic reward learning and performance monitoring. A common evaluative mechanism purportedly subserves both functions, giving rise to homologous medial frontal negativities in feedback- and response-locked event-related brain potentials (the feedback-related negativity (FRN) and the error-related negativity (ERN), respectively), reflecting dopamine-dependent prediction error signals to unexpectedly negative events. Consistent with this model, the dopamine receptor antagonist, haloperidol, attenuates the ERN, but effects on FRN have not yet been evaluated.

Methods

ERN and FRN were recorded during a temporal interval learning task (TILT) following randomized, double-blind administration of haloperidol (3 mg; n = 18), diphenhydramine (an active control for haloperidol; 25 mg; n = 20), or placebo (n = 21) to healthy controls. Centroparietal positivities, the Pe and feedback-locked P300, were also measured and correlations between ERP measures and behavioral indices of learning, overall accuracy, and post-error compensatory behavior were evaluated. We hypothesized that haloperidol would reduce ERN and FRN, but that ERN would uniquely track automatic, error-related performance adjustments, while FRN would be associated with learning and overall accuracy.

Results

As predicted, ERN was reduced by haloperidol and in those exhibiting less adaptive post-error performance; however, these effects were limited to ERNs following fast timing errors. In contrast, the FRN was not affected by drug condition, although increased FRN amplitude was associated with improved accuracy. Significant drug effects on centroparietal positivities were also absent.

Conclusions

Our results support a functional and neurobiological dissociation between the ERN and FRN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Uncorrected p values are reported for follow-up comparisons controlling for effects of overall accuracy.

  2. Repetition of this analysis with difference waves derived for fastest fast errors and slowest slow errors (as previously defined for response-locked ERP analysis) also revealed a main effect of electrode (F(1, 56) = 57.30, p < 0.001), as well as an interaction between electrode and error type (F(1, 56) = 6.34, p = 0.015) for peak FRN amplitude; main and interaction effects of group were also nonsignificant. A main effect of error type was noted with respect to FRN latency (F(1, 56) = 5.90, p = 0.018), with fastest fast error FRNs somewhat delayed relative to slowest slow error FRNs across all groups (t(58) = 2.34, p = 0.023); main and interaction effects with group were again nonsignificant for FRN latency.

References

  • Alexander WH, Brown JW (2010) Computational models of performance monitoring and cognitive control. Top Cogn Sci 2:658–677. doi:10.1111/j.1756-8765.2010.01085.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Alexander WH, Brown JW (2011) Medial prefrontal cortex as an action-outcome predictor. Nat Neurosci 14:1338–1344. doi:10.1038/nn.2921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakic J, Jepma M, De Raedt R, Pourtois G (2014) Effects of positive mood on probabilistic learning: behavioral and electrophysiological correlates. Biol Psychol 103:223–232. doi:10.1016/j.biopsycho.2014.09.012

    Article  PubMed  Google Scholar 

  • Barnes JJ, O'Connell RG, Nandam LS, Dean AJ, Bellgrove MA (2014) Monoaminergic modulation of behavioural and electrophysiological indices of error processing. Psychopharmacology 231:379–392. doi:10.1007/s00213-013-3246-y

    Article  CAS  PubMed  Google Scholar 

  • Becker MP, Nitsch AM, Miltner WH, Straube T (2014) A single-trial estimation of the feedback-related negativity and its relation to BOLD responses in a time-estimation task. J Neurosci 34:3005–3012. doi:10.1523/jneurosci.3684-13.2014

    Article  CAS  PubMed  Google Scholar 

  • Bellebaum C, Daum I (2008) Learning-related changes in reward expectancy are reflected in the feedback-related negativity. Eur J Neurosci 27:1823–1835. doi:10.1111/j.1460-9568.2008.06138.x

    Article  PubMed  Google Scholar 

  • Bernat EM, Nelson LD, Steele VR, Gehring WJ, Patrick CJ (2011) Externalizing psychopathology and gain-loss feedback in a simulated gambling task: dissociable components of brain response revealed by time-frequency analysis. J Abnorm Psychol 120:352–364. doi:10.1037/a0022124

    Article  PubMed  PubMed Central  Google Scholar 

  • Beste C, Willemssen R, Saft C, Falkenstein M (2009) Error processing in normal aging and in basal ganglia disorders. Neuroscience 159:143–149. doi:10.1016/j.neuroscience.2008.12.030

    Article  CAS  PubMed  Google Scholar 

  • Botvinick MM (2007) Conflict monitoring and decision making: reconciling two perspectives on anterior cingulate function. Cogn Affect Behav Neurosci 7:356–366

    Article  PubMed  Google Scholar 

  • Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD (2001) Conflict monitoring and cognitive control. Psychol Rev 108:624–652

    Article  CAS  PubMed  Google Scholar 

  • Brown JW, Braver TS (2005) Learned predictions of error likelihood in the anterior cingulate cortex. Science (New York, NY) 307:1118–1121. doi:10.1126/science.1105783

    Article  CAS  Google Scholar 

  • Bymaster FP et al (1996) Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 14:87–96. doi:10.1016/0893-133x(94)00129-n

    Article  CAS  Google Scholar 

  • Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD (1998) Anterior cingulate cortex, error detection, and the online monitoring of performance. Science (New York, NY) 280:747–749

    Article  CAS  Google Scholar 

  • Chang A, Chen CC, Li HH, Li CS (2014) Event-related potentials for post-error and post-conflict slowing. PLoS One 9:e99909. doi:10.1371/journal.pone.0099909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chase HW, Swainson R, Durham L, Benham L, Cools R (2011) Feedback-related negativity codes prediction error but not behavioral adjustment during probabilistic reversal learning. J Cogn Neurosci 23:936–946. doi:10.1162/jocn.2010.21456

    Article  PubMed  Google Scholar 

  • Cohen MX, Ranganath C (2007) Reinforcement learning signals predict future decisions. J Neurosci 27:371–378. doi:10.1523/jneurosci.4421-06.2007

    Article  CAS  PubMed  Google Scholar 

  • de Bruijn ER, Hulstijn W, Verkes RJ, Ruigt GS, Sabbe B (2005) Altered response evaluation monitoring of late responses after administration of D-amphetamine. J Psychophysiol 19:311–318. doi:10.1027/0269-8803.19.4.311

    Article  Google Scholar 

  • de Bruijn ER, Hulstijn W, Verkes RJ, Ruigt GS, Sabbe BG (2004) Drug-induced stimulation and suppression of action monitoring in healthy volunteers. Psychopharmacology 177:151–160. doi:10.1007/s00213-004-1915-6

    Article  CAS  PubMed  Google Scholar 

  • de Bruijn ER, Sabbe BG, Hulstijn W, Ruigt GS, Verkes RJ (2006) Effects of antipsychotic and antidepressant drugs on action monitoring in healthy volunteers. Brain Res 1105:122–129. doi:10.1016/j.brainres.2006.01.006

    Article  PubMed  CAS  Google Scholar 

  • Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engel AK (2005) Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J Neurosci 25:11730–11737. doi:10.1523/jneurosci.3286-05.2005

    Article  CAS  PubMed  Google Scholar 

  • Dehaene S, Posner MI, Tucker DM (1994) Localization of a neural system for error detection and compensation. Psychol Sci 5:303–305

    Article  Google Scholar 

  • Donchin E, Coles MGH (1988) Is the P300 component a manifestation of context updating? Behav Brain Sci 11:357–374. doi:10.1017/S0140525X00058027

    Article  Google Scholar 

  • Durstewitz D, Seamans JK (2008) The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-o-methyltransferase genotypes and schizophrenia. Biol Psychiatry 64:739–749. doi:10.1016/j.biopsych.2008.05.015

    Article  CAS  PubMed  Google Scholar 

  • Eriksen BA, Eriksen CW (1974) Effects of noise letters upon the identification of a target letter in a non-search task. Perception and Psychophysics 16:143–149

    Article  Google Scholar 

  • Falkenstein M, Hielscher H, Dziobek I, Schwarzenau P, Hoormann J, Sunderman B, Hohnsbein J (2001) Action monitoring, error detection, and the basal ganglia: an ERP study. Neuroreport 12:157–161

    Article  CAS  PubMed  Google Scholar 

  • Falkenstein M, Hoormann J, Christ S, Hohnsbein J (2000) ERP components on reaction errors and their functional significance: a tutorial. Biol Psychol 51:87–107

    Article  CAS  PubMed  Google Scholar 

  • Ferdinand NK, Becker AM, Kray J, Gehring WJ (2016) Feedback processing in children and adolescents: is there a sensitivity for processing rewarding feedback? Neuropsychologia 82:31–38. doi:10.1016/j.neuropsychologia.2016.01.007

    Article  PubMed  Google Scholar 

  • Fischer R, Dreisbach G, Goschke T (2008) Context-sensitive adjustments of cognitive control: conflict-adaptation effects are modulated by processing demands of the ongoing task. J Exp Psychol Learn Mem Cogn 34:712–718

    Article  PubMed  Google Scholar 

  • Forster SE, Carter CS, Cohen JD, Cho RY (2011) Parametric manipulation of the conflict signal and control-state adaptation. J Cogn Neurosci 23:923–935. doi:10.1162/jocn.2010.21458

    Article  PubMed  Google Scholar 

  • Frank MJ, O'Reilly RC (2006) A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol. Behav Neurosci 120:497–517. doi:10.1037/0735-7044.120.3.497

    Article  CAS  PubMed  Google Scholar 

  • Frank MJ, Woroch BS, Curran T (2005) Error-related negativity predicts reinforcement learning and conflict biases. Neuron 47:495–501. doi:10.1016/j.neuron.2005.06.020

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Garcia M, Clemente I, Dominguez-Borras J, Escera C (2010) Dopamine transporter regulates the enhancement of novelty processing by a negative emotional context. Neuropsychologia 48:1483–1488. doi:10.1016/j.neuropsychologia.2010.01.018

    Article  PubMed  Google Scholar 

  • Gehring WJ, Goss B, Coles MG, Meyer DE, Donchin E (1993) A neural system for error-detection and compensation. Psychol Sci 4:385–390

    Article  Google Scholar 

  • Gentsch A, Ullsperger P, Ullsperger M (2009) Dissociable medial frontal negativities from a common monitoring system for self- and externally caused failure of goal achievement. NeuroImage 47:2023–2030. doi:10.1016/j.neuroimage.2009.05.064

    Article  PubMed  Google Scholar 

  • Glienke K, Wolf OT, Bellebaum C (2015) The impact of stress on feedback and error processing during behavioral adaptation. Neuropsychologia 71:181–190. doi:10.1016/j.neuropsychologia.2015.04.004

    Article  PubMed  Google Scholar 

  • Groppe DM, Urbach TP, Kutas M (2011) Mass univariate analysis of event-related brain potentials/fields I: a critical tutorial review. Psychophysiology 48:1711–1725. doi:10.1111/j.1469-8986.2011.01273.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Gruendler TO, Ullsperger M, Huster RJ (2011) Event-related potential correlates of performance-monitoring in a lateralized time-estimation task. PLoS One 6:e25591. doi:10.1371/journal.pone.0025591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajcak G, McDonald N, Simons RF (2003) To err is autonomic: error-related brain potentials, ANS activity, and post-error compensatory behavior. Psychophysiology 40:895–903

    Article  PubMed  Google Scholar 

  • Harvey PD, Keefe RS, Moskowitz J, Putnam KM, Mohs RC, Davis KL (1990) Attentional markers of vulnerability to schizophrenia: performance of medicated and unmedicated patients and normals. Psychiatry Res 33:179–188

    Article  CAS  PubMed  Google Scholar 

  • Hauser TU, Iannaccone R, Stampfli P, Drechsler R, Brandeis D, Walitza S, Brem S (2014) The feedback-related negativity (FRN) revisited: new insights into the localization, meaning and network organization. NeuroImage 84:159–168. doi:10.1016/j.neuroimage.2013.08.028

    Article  PubMed  Google Scholar 

  • Hester R, Madeley J, Murphy K, Mattingley JB (2009) Learning from errors: error-related neural activity predicts improvements in future inhibitory control performance. J Neurosci 29:7158–7165. doi:10.1523/jneurosci.4337-08.2009

    Article  CAS  PubMed  Google Scholar 

  • Holroyd CB, Coles MG (2002) The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol Rev 109:679–709

    Article  PubMed  Google Scholar 

  • Holroyd CB, Krigolson OE (2007) Reward prediction error signals associated with a modified time estimation task. Psychophysiology 44:913–917. doi:10.1111/j.1469-8986.2007.00561.x

    Article  PubMed  Google Scholar 

  • Holroyd CB, Praamstra P, Plat E, Coles MG (2002) Spared error-related potentials in mild to moderate Parkinson’s disease. Neuropsychologia 40:2116–2124

    Article  PubMed  Google Scholar 

  • Huang WJ, Chen WW, Zhang X (2015) The neurophysiology of P 300—an integrated review. European review for medical and pharmacological sciences 19:1480–1488

    PubMed  Google Scholar 

  • Ito J, Kitagawa J (2006) Performance monitoring and error processing during a lexical decision task in patients with Parkinson’s disease. J Geriatr Psychiatry Neurol 19:46–54. doi:10.1177/0891988705284716

    Article  PubMed  Google Scholar 

  • Jessup RK, Busemeyer JR, Brown JW (2010) Error effects in anterior cingulate cortex reverse when error likelihood is high. J Neurosci 30:3467–3472. doi:10.1523/jneurosci.4130-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johannes S, Wieringa BM, Nager W, Dengler R, Munte TF (2001) Oxazepam alters action monitoring. Psychopharmacology 155:100–106

    Article  CAS  PubMed  Google Scholar 

  • Johnson TM, Otten LJ, Boeck K, Coles MG (1997) Am I too late? The neural consequences of missing a deadline. Paper presented at the Society for Psychophysiological Research,

  • Kam JW, Dao E, Blinn P, Krigolson OE, Boyd LA, Handy TC (2012) Mind wandering and motor control: off-task thinking disrupts the online adjustment of behavior. Front Hum Neurosci 6:329. doi:10.3389/fnhum.2012.00329

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaplan HI, Sadock BJ (1998) Antihistamines and dopamine receptor antagonists. In K. C. Millet (Ed.), Synopsis of psychiatry (pp. 983–1024). Baltimore, MA: Williams & Wilkins.

  • Khot V, DeVane CL, Korpi ER, Venable D, Bigelow LB, Wyatt RJ, Kirch DG (1993) The assessment and clinical implications of haloperidol acute-dose, steady-state, and withdrawal pharmacokinetics. J Clin Psychopharmacol 13:120–127

    Article  CAS  PubMed  Google Scholar 

  • Kramer UM et al (2007) The impact of catechol-O-methyltransferase and dopamine D4 receptor genotypes on neurophysiological markers of performance monitoring. J Neurosci 27:14190–14198. doi:10.1523/jneurosci.4229-07.2007

    Article  PubMed  CAS  Google Scholar 

  • Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM (1996) Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 6:243–250

    Article  CAS  PubMed  Google Scholar 

  • Llerena K, Wynn JK, Hajcak G, Green MF, Horan WP (2016) Patterns and reliability of EEG during error monitoring for internal versus external feedback in schizophrenia. International journal of psychophysiology: official journal of the International Organization of Psychophysiology 105:39–46. doi:10.1016/j.ijpsycho.2016.04.012

    Article  Google Scholar 

  • Luft CD, Takase E, Bhattacharya J (2014) Processing graded feedback: electrophysiological correlates of learning from small and large errors. J Cogn Neurosci 26:1180–1193. doi:10.1162/jocn_a_00543

    Article  PubMed  Google Scholar 

  • Luu P, Flaisch T, Tucker DM (2000) Medial frontal cortex in action monitoring. J Neurosci 20:464–469

    CAS  PubMed  Google Scholar 

  • Marco-Pallares J et al (2009) Genetic variability in the dopamine system (dopamine receptor D4, catechol-O-methyltransferase) modulates neurophysiological responses to gains and losses. Biol Psychiatry 66:154–161. doi:10.1016/j.biopsych.2009.01.006

    Article  CAS  PubMed  Google Scholar 

  • Marco-Pallares J et al (2010) Neurophysiological markers of novelty processing are modulated by COMT and DRD4 genotypes. NeuroImage 53:962–969. doi:10.1016/j.neuroimage.2010.02.012

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Horta S et al (2014) Apathy in Parkinson’s disease: neurophysiological evidence of impaired incentive processing. J Neurosci 34:5918–5926. doi:10.1523/jneurosci.0251-14.2014

    Article  CAS  PubMed  Google Scholar 

  • Mathalon DH, Fedor M, Faustman WO, Gray M, Askari N, Ford JM (2002) Response-monitoring dysfunction in schizophrenia: an event-related brain potential study. J Abnorm Psychol 111:22–41

    Article  PubMed  Google Scholar 

  • Mathalon DH, Whitfield SL, Ford JM (2003) Anatomy of an error: ERP and fMRI. Biol Psychol 64:119–141

    Article  PubMed  Google Scholar 

  • Mathewson KJ, Dywan J, Segalowitz SJ (2005) Brain bases of error-related ERPs as influenced by age and task. Biol Psychol 70:88–104. doi:10.1016/j.biopsycho.2004.12.005

    Article  PubMed  Google Scholar 

  • Miltner WH, Braun CH, Coles MG (1997) Event-related brain potentials following incorrect feedback in a time-estimation task: evidence for a “generic” neural system for error detection. J Cogn Neurosci 9:788–798. doi:10.1162/jocn.1997.9.6.788

    Article  CAS  PubMed  Google Scholar 

  • Morris SE, Holroyd CB, Mann-Wrobel MC, Gold JM (2011) Dissociation of response and feedback negativity in schizophrenia: electrophysiological and computational evidence for a deficit in the representation of value. Front Hum Neurosci 5:123. doi:10.3389/fnhum.2011.00123

    Article  PubMed  PubMed Central  Google Scholar 

  • Mueller EM, Burgdorf C, Chavanon ML, Schweiger D, Hennig J, Wacker J, Stemmler G (2014a) The COMT Val158Met polymorphism regulates the effect of a dopamine antagonist on the feedback-related negativity. Psychophysiology 51:805–809. doi:10.1111/psyp.12226

    Article  PubMed  Google Scholar 

  • Mueller EM, Burgdorf C, Chavanon ML, Schweiger D, Wacker J, Stemmler G (2014b) Dopamine modulates frontomedial failure processing of agentic introverts versus extraverts in incentive contexts. Cognitive, affective & behavioral neuroscience 14:756–768. doi:10.3758/s13415-013-0228-9

    Article  Google Scholar 

  • Mueller EM, Makeig S, Stemmler G, Hennig J, Wacker J (2011) Dopamine effects on human error processing depend on catechol-O-methyltransferase VAL158MET genotype. J Neurosci 31:15818–15825. doi:10.1523/jneurosci.2103-11.2011

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Cebrian A, Knight RT, Kayser AS (2016) Frontal monitoring and parietal evidence: mechanisms of error correction. J Cogn Neurosci 28:1166–1177. doi:10.1162/jocn_a_00962

    Article  PubMed  Google Scholar 

  • Nieuwenhuis S, Aston-Jones G, Cohen JD (2005) Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychol Bull 131:510–532. doi:10.1037/0033-2909.131.4.510

    Article  PubMed  Google Scholar 

  • Nieuwenhuis S, Ridderinkhof KR, Blom J, Band GP, Kok A (2001) Error-related brain potentials are differentially related to awareness of response errors: evidence from an antisaccade task. Psychophysiology 38:752–760

    Article  CAS  PubMed  Google Scholar 

  • Niki H, Watanabe M (1979) Prefrontal and cingulate unit activity during timing behavior in the monkey. Brain Res 171:213–224

    Article  CAS  PubMed  Google Scholar 

  • Nunez Castellar E, Kuhn S, Fias W, Notebaert W (2010) Outcome expectancy and not accuracy determines posterror slowing: ERP support. Cogn Affect Behav Neurosci 10:270–278. doi:10.3758/cabn.10.2.270

    Article  PubMed  Google Scholar 

  • O'Connor SE, Brown RA (1982) The pharmacology of sulpiride—a dopamine receptor antagonist. Gen Pharmacol 13:185–193

    Article  PubMed  Google Scholar 

  • O'Toole SA, Weinborn M, Fox AM (2012) Performance monitoring among non-patients with obsessive-compulsive symptoms: ERP evidence of aberrant feedback monitoring. Biol Psychol 91:221–228. doi:10.1016/j.biopsycho.2012.06.005

    Article  PubMed  Google Scholar 

  • Oliveira FT, McDonald JJ, Goodman D (2007) Performance monitoring in the anterior cingulate is not all error related: expectancy deviation and the representation of action-outcome associations. J Cogn Neurosci 19:1994–2004. doi:10.1162/jocn.2007.19.12.1994

    Article  PubMed  Google Scholar 

  • Osinsky R, Hewig J, Alexander N, Hennig J (2012) COMT Val158Met genotype and the common basis of error and conflict monitoring. Brain Res 1452:108–118. doi:10.1016/j.brainres.2012.02.054

    Article  CAS  PubMed  Google Scholar 

  • Overbeek TJM, Nieuwenhuis S, Ridderinkhof KR (2005) Dissociable components of error processing: on the functional significance of the Pe vis-à-vis the ERN/Ne. J Psychophysiol 19:319–329. doi:10.1027/0269-8803.19.4.319

    Article  Google Scholar 

  • Pehek EA (1999) Comparison of effects of haloperidol administration on amphetamine-stimulated dopamine release in the rat medial prefrontal cortex and dorsal striatum. J Pharmacol Exp Ther 289:14–23

    CAS  PubMed  Google Scholar 

  • Pfabigan DM, Zeiler M, Lamm C, Sailer U (2014) Blocked versus randomized presentation modes differentially modulate feedback-related negativity and P3b amplitudes. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 125:715–726. doi:10.1016/j.clinph.2013.09.029

    Article  Google Scholar 

  • Pine A, Shiner T, Seymour B, Dolan RJ (2010) Dopamine, time, and impulsivity in humans. J Neurosci 30:8888–8896. doi:10.1523/jneurosci.6028-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pogarell O et al (2011) Dopaminergic mechanisms of target detection—P300 event related potential and striatal dopamine. Psychiatry Res 194:212–218. doi:10.1016/j.pscychresns.2011.02.002

    Article  CAS  PubMed  Google Scholar 

  • Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118:2128–2148

    Article  PubMed  PubMed Central  Google Scholar 

  • Potts GF, Martin LE, Kamp SM, Donchin E (2011) Neural response to action and reward prediction errors: comparing the error-related negativity to behavioral errors and the feedback-related negativity to reward prediction violations. Psychophysiology 48:218–228. doi:10.1111/j.1469-8986.2010.01049.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Rammsayer T (2008) Neuropharmacological approaches to human timing. In: Grondin S (ed) Psychology of time. Emerald Group Publishing Limited, Bingley, UK, pp 295–317

    Google Scholar 

  • Rietdijk WJR, Franken IHA, Thurik AR (2014) Internal consistency of event-related potentials associated with cognitive control: N2/P3 and ERN/Pe. PLoS One 9:e102672. doi:10.1371/journal.pone.0102672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodriguez-Fornells A, Kurzbuch AR, Munte TF (2002) Time course of error detection and correction in humans: neurophysiological evidence. J Neurosci 22:9990–9996

    CAS  PubMed  Google Scholar 

  • Ruchsow M, Grothe J, Spitzer M, Kiefer M (2002) Human anterior cingulate cortex is activated by negative feedback: evidence from event-related potentials in a guessing task. Neurosci Lett 325:203–206

    Article  CAS  PubMed  Google Scholar 

  • San Martin R, Appelbaum LG, Pearson JM, Huettel SA, Woldorff MG (2013) Rapid brain responses independently predict gain maximization and loss minimization during economic decision making. J Neurosci 33:7011–7019. doi:10.1523/jneurosci.4242-12.2013

    Article  CAS  PubMed  Google Scholar 

  • Santesso DL, Dillon DG, Birk JL, Holmes AJ, Goetz E, Bogdan R, Pizzagalli DA (2008) Individual differences in reinforcement learning: behavioral, electrophysiological, and neuroimaging correlates. Neuroimage 42:807–816. doi:10.1016/j.neuroimage.2008.05.032

    Article  PubMed  PubMed Central  Google Scholar 

  • Santesso DL, Evins AE, Frank MJ, Schetter EC, Bogdan R, Pizzagalli DA (2009) Single dose of a dopamine agonist impairs reinforcement learning in humans: evidence from event-related potentials and computational modeling of striatal-cortical function. Hum Brain Mapp 30:1963–1976. doi:10.1002/hbm.20642

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheffers MK, Coles MG, Bernstein P, Gehring WJ, Donchin E (1996) Event-related brain potentials and error-related processing: an analysis of incorrect responses to go and no-go stimuli. Psychophysiology 33:42–53

    Article  CAS  PubMed  Google Scholar 

  • Schultz W (2006) Behavioral theories and the neurophysiology of reward. Annu Rev Psychol 57:87–115. doi:10.1146/annurev.psych.56.091103.070229

    Article  PubMed  Google Scholar 

  • Segalowitz SJ, Santesso DL, Murphy TI, Homan D, Chantziantoniou DK, Khan S (2010) Retest reliability of medial frontal negativities during performance monitoring. Psychophysiology 47:260–270. doi:10.1111/j.1469-8986.2009.00942.x

    Article  PubMed  Google Scholar 

  • Spronk DB, Verkes RJ, Cools R, Franke B, Van Wel JH, Ramaekers JG, De Bruijn ER (2016) Opposite effects of cannabis and cocaine on performance monitoring. European neuropsychopharmacology the journal of the European College of Neuropsychopharmacology 26:1127–1139. doi:10.1016/j.euroneuro.2016.03.015

    Article  CAS  PubMed  Google Scholar 

  • Stahl J, Gibbons H (2007) Dynamics of response-conflict monitoring and individual differences in response control and behavioral control: an electrophysiological investigation using a stop-signal task. Clin Neurophysiol 118:581–596. doi:10.1016/j.clinph.2006.10.023

    Article  PubMed  Google Scholar 

  • Stemmer B, Segalowitz SJ, Dywan J, Panisset M, Melmed C (2007) The error negativity in nonmedicated and medicated patients with Parkinson’s disease. Clin Neurophysiol 118:1223–1229. doi:10.1016/j.clinph.2007.02.019

    Article  PubMed  Google Scholar 

  • Strobel A, Debener S, Anacker K, Muller J, Lesch KP, Brocke B (2004) Dopamine D4 receptor exon III genotype influence on the auditory evoked novelty P3. Neuroreport 15:2411–2415

    Article  CAS  PubMed  Google Scholar 

  • Tomassini A, Ruge D, Galea JM, Penny W, Bestmann S (2016) The role of dopamine in temporal uncertainty. J Cogn Neurosci 28:96–110. doi:10.1162/jocn_a_00880

    Article  PubMed  Google Scholar 

  • Ullsperger M, Nittono H, von Cramon DY (2007) When goals are missed: dealing with self-generated and externally induced failure. NeuroImage 35:1356–1364

    Article  PubMed  Google Scholar 

  • van der Helden J, Boksem MA, Blom JH (2010) The importance of failure: feedback-related negativity predicts motor learning efficiency. Cereb Cortex 20:1596–1603. doi:10.1093/cercor/bhp224

    Article  PubMed  Google Scholar 

  • Van Noordt SJ, Campopiano A, Segalowitz SJ (2016) A functional classification of medial frontal negativity ERPs: Theta oscillations and single subject effects. Psychophysiology. doi:10.1111/psyp.12689

  • Walsh MM, Anderson JR (2012) Learning from experience: event-related potential correlates of reward processing, neural adaptation, and behavioral choice. Neurosci Biobehav Rev 36:1870–1884. doi:10.1016/j.neubiorev.2012.05.008

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Isoda M, Matsuzaka Y, Shima K, Tanji J (2005) Prefrontal cortical cells projecting to the supplementary eye field and presupplementary motor area in the monkey. Neurosci Res 53:1–7

    Article  PubMed  Google Scholar 

  • West R, Travers S (2008) Tracking the temporal dynamics of updating cognitive control: an examination of error processing. Cereb Cortex 18:1112–1124. doi:10.1093/cercor/bhm142

    Article  PubMed  Google Scholar 

  • Willemssen R, Muller T, Schwarz M, Hohnsbein J, Falkenstein M (2008) Error processing in patients with Parkinson’s disease: the influence of medication state. J Neural Transm (Vienna) 115:461–468. doi:10.1007/s00702-007-0842-1

    Article  CAS  Google Scholar 

  • Witek TJ Jr, Canestrari DA, Miller RD, Yang JY, Riker DK (1995) Characterization of daytime sleepiness and psychomotor performance following H1 receptor antagonists. Annals of allergy, asthma & immunology: official publication of the American College of Allergy, Asthma, & Immunology 74:419–426

    Google Scholar 

  • Wu Q, Reith ME, Walker QD, Kuhn CM, Carroll FI, Garris PA (2002) Concurrent autoreceptor-mediated control of dopamine release and uptake during neurotransmission: an in vivo voltammetric study. J Neurosci 22:6272–6281

    CAS  PubMed  Google Scholar 

  • Yeung N, Botvinick MM, Cohen JD (2004) The neural basis of error detection: conflict monitoring and the error-related negativity. Psychol Rev 111:931–959. doi:10.1037/0033-295x.111.4.939

    Article  PubMed  Google Scholar 

  • Zirnheld PJ, Carroll CA, Kieffaber PD, O'Donnell BF, Shekhar A, Hetrick WP (2004) Haloperidol impairs learning and error-related negativity in humans. J Cogn Neurosci 16:1098–1112. doi:10.1162/0898929041502779

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Forster was partially supported by funding from the VISN 4 Mental Illness Research, Education and Clinical Center (MIRECC, Director: D. Oslin; Pittsburgh Site Director: G. Haas), VA Pittsburgh Healthcare System. The contents do not represent the views of the Department of Veterans Affairs, Department of Defense, or the United States Government. We would like to thank Samuel Bartley for providing laboratory management support during data analysis and manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah E. Forster.

Ethics declarations

All participants provided informed consent in accordance with the Indiana University–Purdue University Indianapolis Institutional Review Board.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 655 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forster, S.E., Zirnheld, P., Shekhar, A. et al. Event-related potentials reflect impaired temporal interval learning following haloperidol administration. Psychopharmacology 234, 2545–2562 (2017). https://doi.org/10.1007/s00213-017-4645-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-017-4645-2

Keywords

Navigation