Skip to main content
Log in

The effects of adenosine A2A receptor antagonists on haloperidol-induced movement disorders in primates

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Adenosine and dopamine interact within the striatum to control striatopallidal output and globus pallidus GABA release. Manipulating striatal adenosine transmission via blockade of the A2A receptor subtype can compensate for the reduced dopamine activity within the striatum that underlies movement disorders such as antipsychotic-induced extrapyramidal syndrome (EPS) and Parkinson’s disease (PD). Preclinical studies in the rat have demonstrated that adenosine A2A receptor antagonists can attenuate behaviors reflecting reduced dopamine activity, such as haloperidol-induced catalepsy and hypoactivity.

Objectives

In the present studies using nonhuman primates, adenosine antagonists were tested against haloperidol-induced EPS in Cebus apella and haloperidol-induced catalepsy in Saimiri sciureus (squirrel monkey). Specifically, the A2A receptor antagonists, SCH 412348 (0.3–30 mg/kg PO) and KW-6002 (3–100 mg/kg PO); the A1/A2A receptor antagonist, caffeine (1–30 mg/kg PO and IM); and the A1 receptor antagonist, DPCPX (3–30 mg/kg PO) were tested in at least one of these models.

Results

SCH 412348 (10–30 mg/kg), KW-6002 (57–100 mg/kg), and caffeine (30 mg/kg) significantly increased the time to EPS onset. Additionally, SCH 412348, KW-6002, and caffeine afforded protection from the onset of EPS for at least 6 h in some of the primates. SCH 412348 (10 mg/kg) and caffeine (10 mg/kg) significantly reduced haloperidol-induced catalepsy. DPCPX produced a very slight attenuation of EPS at 30 mg/kg, but had no effect on catalepsy.

Conclusions

These findings suggest that adenosine A2A receptor antagonists may represent an effective treatment for the motor impairments associated with both antipsychotic-induced EPS and PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271

    Article  PubMed  CAS  Google Scholar 

  • Andersen MB, Fink-Jensen A, Peacock L, Gerlach J, Bymaster F, Lundbaek JA, Werge T (2003) The muscarinic M1/M4 receptor agonist xanomeline exhibits antipsychotic-like activity in Cebus apella monkeys. Neuropsychopharmacology 28:1168–1175

    PubMed  CAS  Google Scholar 

  • Arnt J, Skarsfeldt T (1998) Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacology 18:63–101

    Article  PubMed  CAS  Google Scholar 

  • Bara-Jimenez W, Sherzai A, Dimitrova T, Favit A, Bibbiani F, Gillespie M, Morris MJ, Mouradian MM, Chase TN (2003) Adenosine A(2A) receptor antagonist treatment of Parkinson’s disease. Neurology 61:293–296

    PubMed  CAS  Google Scholar 

  • Cantor CR, Stern MB (2002) Dopamine agonists and sleep in Parkinson’s disease. Neurology 58(4 Suppl 1):S71–S78

    PubMed  CAS  Google Scholar 

  • Casey DE (1995) The effects of D1 (NNC 22-0215) and D2 (haloperidol) antagonists in a chronic double-blind placebo controlled trial in Cebus monkeys. Psychopharmacology 121:289–293

    Article  PubMed  CAS  Google Scholar 

  • Chase TN, Bibbiani F, Bara-Jimenez W, Dimitrova T, Oh-Lee JD (2003) Translating A2A antagonist KW6002 from animal models to parkinsonian patients. Neurology 61(Suppl 6):S107–S111

    PubMed  CAS  Google Scholar 

  • Coffin VL, Latranyi MB, Chipkin RE (1989) Acute extrapyramidal syndrome in Cebus monkeys: development mediated by dopamine D2 but not D1 receptors. J Pharmacol Exp Ther 249:769–774

    PubMed  CAS  Google Scholar 

  • Coffin VL, McHuch D, Chipkin RE, Barnett A (1992) SCH 39166, a potential antipsychotic drug, does not evoke movement disorders in Cebus monkeys. Neurochem Int 20(Suppl):141–145

    Article  Google Scholar 

  • Correa M, Wisniecki A, Betz A, Dobson DR, O’Neill MF, O’Neill MJ, Salamone JD (2004) The adenosine A2A antagonist KF17837 reverses the locomotor suppression and tremulous jaw movements induced by haloperidol in rats: possible relevance to parkinsonism. Behav Brain Res 148:47–54

    Article  PubMed  CAS  Google Scholar 

  • Crocker AD, Hemsley KM (2001) An animal model of extrapyramidal side effects induced by antipsychotic drugs: relationship with D2 dopamine receptor occupancy. Prog Neuropsychopharmacol Biol Psychiatry 25:573–590

    Article  PubMed  CAS  Google Scholar 

  • Driver-Dunckley E, Samanta J, Stacy M (2003) Pathological gambling associated with dopamine agonist therapy in Parkinson’s disease. Neurology 61:422–423

    PubMed  CAS  Google Scholar 

  • Ferre S, Fuxe K, von Euler G, Johansson B, Fredholm BB (1992) Adenosine-dopamine interactions in the brain. Neuroscience 51:501–512

    Article  PubMed  CAS  Google Scholar 

  • Ferre S, O’Connor WT, Fuxe K, Ungerstedt U (1993) The striopallidal neuron: a main locus for adenosine-dopamine interactions in the brain. J Neurosci 13:5402–5406

    PubMed  CAS  Google Scholar 

  • Ferre S, Fredholm BB, Morelli M, Popoli P, Fuxe K (1997) Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 20:482–487

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    PubMed  CAS  Google Scholar 

  • Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci 15:133–139

    Article  PubMed  CAS  Google Scholar 

  • Grondin R, Bedard PJ, Hadj Tahar A, Gregoire L, Mori A, Kase H (1999) Antiparkinsonian effect of a new selective adenosine A2A receptor antagonist in MPTP-treated monkeys. Neurology 52:1673–1677

    PubMed  CAS  Google Scholar 

  • Gunne LM, Barany S (1976) Haloperidol-induced tardive dyskinesia in monkeys. Psychopharmacology 50:237–240

    Article  PubMed  CAS  Google Scholar 

  • Hauber W, Neuscheler P, Nagel J, Muller CE (2001) Catalepsy induced by a blockade of dopamine D1 or D2 receptors was reversed by a concomitant blockade of adenosine A(2A) receptors in the caudate-putamen of rats. Eur J Neurosci 14:1287–1293

    Article  PubMed  CAS  Google Scholar 

  • Hauser RA, Hubble JP, Truong DD, Istradefylline US-001 Study Group (2003) Randomized trial of the adenosine A(2A) receptor antagonist istradefylline in advanced PD. Neurology 61:297–303

    PubMed  CAS  Google Scholar 

  • Hettinger BD, Lee A, Linden J, Rosin DL (2001) Ultrastructural localization of adenosine A2A receptors suggests multiple cellular sites for modulation of GABAergic neurons in rat striatum. J Comp Neurol 431:331–346

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5:247–264

    Article  PubMed  CAS  Google Scholar 

  • Jenner P (2005) Istradefylline, a novel adenosine A2A receptor antagonist, for the treatment of Parkinson’s disease. Expert Opin Investig Drugs 14:729–738

    Article  PubMed  CAS  Google Scholar 

  • Johansson B, Georgiev V, Fredholm BB (1997) Distribution and postnatal ontogeny of adenosine A2A receptors in rat brain: comparison with dopamine receptors. Neuroscience 80:1187–1207

    Article  PubMed  CAS  Google Scholar 

  • Kafka SH, Corbett R (1996) Selective adenosine A2A receptor/dopamine D2 receptor interactions in animal models of schizophrenia. Eur J Pharmacol 295:147–154

    Article  PubMed  CAS  Google Scholar 

  • Kanda T, Shiozaki S, Shimada J, Suzuki F, Nakamura J (1994) KF17837: a novel selective adenosine A2A receptor antagonist with anticataleptic activity. Eur J Pharmacol 256:263–268

    Article  PubMed  CAS  Google Scholar 

  • Kanda T, Jackson MJ, Smith LA, Pearce RK, Nakamura J, Kase H, Kuwana Y, Jenner P (1998) Adenosine A2A antagonist: a novel antiparkinsonian agent that does not provoke dyskinesia in parkinsonian monkeys. Ann Neurol 43:507–513

    Article  PubMed  CAS  Google Scholar 

  • Kurokawa M, Koga K, Kase H, Nakamura J, Kuwana Y (1996) Adenosine A2a receptor-mediated modulation of striatal acetylcholine release in vivo. J Neurochem 66:1882–1888

    Article  PubMed  CAS  Google Scholar 

  • Latini S, Pazzagli M, Pepeu G, Pedata F (1996) A2 adenosine receptors: their presence and neuromodulatory role in the central nervous system. Gen Pharmacol 27:925–933

    PubMed  CAS  Google Scholar 

  • Lohse MJ, Klotz KN, Lindenborn-Fotinos J, Reddington M, Schwabe U, Olsson RA (1987) 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX)—a selective high affinity antagonist radioligand for A1 adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol 336:204–210

    Article  PubMed  CAS  Google Scholar 

  • Madsen MV, Peacock L, Werge T, Andersen MB (2006) Effects of the cannabinoid CB1 receptor agonist CP55,940 and antagonist SR141716A on d-amphetamine-induced behaviours in Cebus monkeys. J Psychopharmacol 20:622–628

    Article  PubMed  CAS  Google Scholar 

  • Malec D (1997) Haloperidol-induced catalepsy is influenced by adenosine receptor antagonists. Pol J Pharmacol 49:323–327

    PubMed  CAS  Google Scholar 

  • Mandhane SN, Chopde CT, Ghosh AK (1997) Adenosine A2 receptors modulate haloperidol-induced catalepsy in rats. Eur J Pharmacol 328:135–141

    Article  PubMed  CAS  Google Scholar 

  • Marsden CD (1994) Problems with long-term levodopa therapy for Parkinson’s disease. Clin Neuropharmacol 17(Suppl 2):S32–S44

    PubMed  Google Scholar 

  • Mayfield RD, Larson G, Orona RA, Zahniser NR (1996) Opposing actions of adenosine A2a and dopamine D2 receptor activation on GABA release in the basal ganglia: evidence for an A2a/D2 receptor interaction in globus pallidus. Synapse 22:132–138

    Article  CAS  Google Scholar 

  • Morelli M, Di Paolo T, Wardas J, Calon F, Xiao D, Schwarzschild MA (2007) Role of adenosine A2A receptors in parkinsonian motor impairment and l-DOPA-induced motor complications. Prog Neurobiol 83:293–309

    Article  PubMed  CAS  Google Scholar 

  • Mori A, Shindou T (2003) Modulation of GABAergic transmission in the striatopallidal system by adenosine A2A receptors: a potential mechanism for the antiparkinsonian effects of A2A antagonists. Neurology 61(Suppl 6):S44–S48

    PubMed  CAS  Google Scholar 

  • Neustadt BR, Hao J, Lindo N, Greenlee WJ, Stamford AW, Tulshian D, Ongini E, Hunter J, Monopoli A, Bertorelli R, Foster C, Arik L, Lachowicz J, Ng K, Feng KI (2007) Potent, selective, and orally active adenosine A(2A) receptor antagonists: arylpiperazine derivatives of pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines. Bioorg Med Chem Lett 17:1376–1380

    Article  PubMed  CAS  Google Scholar 

  • Obeso JA, Grandas F, Vaamonde J, Luquin MR, Artieda J, Lera G, Rodriguez ME, Martinez-Lage JM (1989) Motor complications associated with chronic levodopa therapy in Parkinson’s disease. Neurology 39(Suppl 2):11–19

    PubMed  CAS  Google Scholar 

  • Parent A, Cicchetti F (1998) The current model of basal ganglia organization under scrutiny. Mov Disord 13:199–202

    Article  PubMed  CAS  Google Scholar 

  • Pinna A, Fenu S, Morelli M (2001) Motor stimulant effects of the adenosine A(2A) receptor antagonist SCH 58261 do not develop tolerance after repeated treatments in 6-hydroxydopamine-lesioned rats. Synapse 39:233–238

    Article  CAS  Google Scholar 

  • Pinna A, Pontis S, Borsini F, Morelli M (2007) Adenosine A2A receptor antagonists improve deficits in initiation of movement and sensory motor integration in the unilateral 6-hydroxydopamine rat model of Parkinson’s disease. Synapse 61:606–614

    Article  PubMed  CAS  Google Scholar 

  • Pollack AE, Harrison MB, Wooten GF, Fink JS (1993) Differential localization of A2a adenosine receptor mRNA with D1 and D2 dopamine receptor mRNA in striatal output pathways following a selective lesion of striatonigral neurons. Brain Res 631:161–166

    Article  PubMed  CAS  Google Scholar 

  • Popoli P, Frank C, Tebano MT, Potenza RL, Pintor A, Domenici MR, Nazzicone V, Pezzola A, Reggio R (2003) Modulation of glutamate release and excitotoxicity by adenosine A2A receptors. Neurology 61(Suppl 6):S69–S71

    PubMed  CAS  Google Scholar 

  • Richardson PJ, Kase H, Jenner PG (1997) Adenosine A2A receptor antagonists as new agents for the treatment of Parkinson’s disease. Trends Pharmacol Sci 18:338–344

    PubMed  CAS  Google Scholar 

  • Rosenzweig-Lipson S, Bergman J (1994) Catalepsy-associated behavior induced by dopamine D1 receptor antagonists and partial dopamine D1 receptor agonists in squirrel monkeys. Eur J Pharmacol 260:237–241

    Article  PubMed  CAS  Google Scholar 

  • Rosin DL, Robeva A, Woodard RL, Guyenet PG, Linden J (1998) Immunohistochemical localization of adenosine A2A receptors in the rat central nervous system. J Comp Neurol 401:163–186

    Article  PubMed  CAS  Google Scholar 

  • Schiffmann SN, Vanderhaeghen JJ (1993) Adenosine A2 receptors regulate the gene expression of striatopallidal and striatonigral neurons. J Neurosci 13:1080–1087

    PubMed  CAS  Google Scholar 

  • Schiffmann SN, Fisone G, Moresco R, Cunha RA, Ferré S (2007) Adenosine A2A receptors and basal ganglia physiology. Prog Neurobiol 83:277–292

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Lee T (1975) Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science 188:1217–1219

    Article  PubMed  CAS  Google Scholar 

  • Shimada J, Koike N, Shiozaki S, Yanagawa K, Kanda T, Kobayashi H, Ichimura M, Nakamura J, Kase H, Suzuki F (1997) Adenosine A2A antagonists with potent anti-cataleptic activity. Bioorg Med Chem Lett 7:2349–2352

    Article  CAS  Google Scholar 

  • Shiozaki S, Ichikawa S, Nakamura J, Kitamura S, Yamada K, Kuwana Y (1999) Actions of adenosine A2A receptor antagonist KW-6002 on drug-induced catalepsy and hypokinesia caused by reserpine or MPTP. Psychopharmacology 147:90–95

    Article  PubMed  CAS  Google Scholar 

  • Svenningsson P, Le Moine C, Fisone G, Fredholm BB (1999) Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog Neurobiol 59:355–396

    Article  PubMed  CAS  Google Scholar 

  • Weiss B, Santelli S, Lusink G (1977) Movement disorders induced in monkeys by chronic haloperidol treatment. Psychopharmacology 53:289–293

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Tatiana Kazdoba for her help with the data collection and statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey B. Varty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varty, G.B., Hodgson, R.A., Pond, A.J. et al. The effects of adenosine A2A receptor antagonists on haloperidol-induced movement disorders in primates. Psychopharmacology 200, 393–401 (2008). https://doi.org/10.1007/s00213-008-1214-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1214-8

Keywords

Navigation