Skip to main content

Adenosine A2A Receptor Antagonists as Drugs for Symptomatic Control of Parkinson’s Disease in Preclinical Studies

  • Chapter
  • First Online:
The Adenosinergic System

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 10))

  • 697 Accesses

Abstract

Parkinson’s disease (PD) is primarily a neurological basal ganglia (BG)-related disorder caused by progressive degeneration of the nigrostriatal dopaminergic neurons, which results in the cardinal motor symptoms of PD, including bradykinesia (slow movement and difficulty in initiation movement), resting tremor, muscle tone rigidity, postural instability, and sensorimotor integration deficits. The gold standard of PD therapy is characterized by the dopamine precursor L-DOPA however, after several years, this therapy leads to neuropsychiatric and motor complications, including fluctuations in motor response and dyskinesias, which develop in the majority of patients. Consequently, one of the main targets of research in PD is to identify alternative therapeutic approaches to ameliorate PD symptoms without inducing motor complications. Among the non-dopaminergic strategies for PD, one of the most promising is represented by adenosine A2A receptor antagonists, due to the colocalization of these receptors and dopamine D2 receptors in the striatopallidal neurons of the BG, which provides the anatomical basis for the existence of a functional antagonistic interaction between these receptors. Thus, extensive preclinical studies have been performed to prove the effectiveness of adenosine A2A receptor blockade in counteracting the cardinal motor symptoms of PD.

This chapter describes the effects of A2A antagonists alone or in combination with L-DOPA against the cardinal motor symptoms of PD, using rodent and primate models of PD, and the main mechanisms responsible for these anti-parkinsonian effects. In addition, findings suggesting the potential utilization of A2A antagonists, as adjunctive treatments to L-DOPA to reduce the L-DOPA induced wearing-off without modifying dyskinetic movements, have been reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  CAS  PubMed  Google Scholar 

  • Alves G, Forsaa EB, Pedersen KF et al (2008) Epidemiology of Parkinson’s disease. J Neurol 255:18–32

    Article  PubMed  Google Scholar 

  • Armentero MT, Pinna A, Ferré S et al (2011) Past, present and future of A(2A) adenosine receptor antagonists in the therapy of Parkinson’s disease. Pharmacol Ther 132:280–299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Azdad K, Gall D, Woods AS et al (2009) Dopamine D2 and adenosine A2A receptors regulate NMDA-mediated excitation in accumbens neurons through A2A-D2 receptor heteromerization. Neuropsychopharmacology 34:972–986

    Article  CAS  Google Scholar 

  • Bar-Gad I, Bergman H (2001) Stepping out of the box: information processing in the neural networks of the basal ganglia. Curr Opin Neurobiol 11:689–695

    Article  CAS  PubMed  Google Scholar 

  • Betz AJ, Vontell R, Valenta J et al (2009) Effects of the adenosine A2A antagonist KW 6002 (istradefylline) on pimozide-induced oral tremor and striatal c-Fos expression: comparisons with the muscarinic antagonist tropicamide. Neuroscience 163:97–108

    Article  CAS  PubMed  Google Scholar 

  • Bibbiani F, Oh JD, Petzer JP et al (2003) A2A antagonist prevents dopamine agonist-induced motor complications in animal models of Parkinson’s disease. Exp Neurol 184:285–294

    Article  CAS  PubMed  Google Scholar 

  • Bibbiani F, Costantini LC, Patel R et al (2005) Continuous dopaminergic stimulation reduces risk of motor complications in parkinsonian primates. Exp Neurol 192:73–78

    Google Scholar 

  • Bogenpohl JW, Ritter SL, Hall RA et al (2012) Adenosine A2A receptor in the monkey basal ganglia: ultrastructural localization and colocalization with the metabotropic glutamate receptor 5 in the striatum. J Comp Neurol 520:570–589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bové J, Marin C, Bonastre M et al (2002) Adenosine A2A antagonism reverses levodopa-induced motor alterations in hemiparkinsonian rats. Synapse 15:251–257

    Article  CAS  Google Scholar 

  • Bové J, Serrats J, Mengod G et al (2006) Reversion of levodopa-induced motor fluctuations by the A2A antagonist CSC is associated with an increase in striatal preprodynorphin mRNA expression in 6-OHDA-lesioned rats. Synapse 59:435–444

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Del Tredici K, Rüb U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  • Chang JW, Wachtel SR, Young D et al (1999) Biochemical and anatomical characterization of foreforelimb adjusting steps in rat models of Parkinson’s disease: studies on medial forebrain bundle and striatal lesions. Neuroscience 88:617–628

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri KR, Healy DG, Schapira AH et al (2006) Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 5:235–245

    Article  PubMed  Google Scholar 

  • Collins LE, Galtieri DJ, Brennum LT et al (2010) Oral tremor induced by the muscarinic agonist pilocarpine is suppressed by the adenosine A2A antagonists MSX-3 and SCH58261, but not the adenosine A1 antagonist DPCPX. Pharmacol Biochem Behav 94:561–569

    Article  CAS  PubMed  Google Scholar 

  • Collins LE, Sager TN, Sams AG et al (2012) The novel adenosine A2A antagonist Lu AA47070 reverses the motor and motivational effects produced by dopamine D2 receptor blockade. Pharmacol Biochem Behav 100:498–505

    Article  CAS  PubMed  Google Scholar 

  • Collins-Praino LE, Paul NE, Rychalsky KL et al (2011) Pharmacological and physiological characterization of the tremulous jaw movement model of parkinsonian tremor: potential insights into the pathophysiology of tremor. Front Syst Neurosci 5:49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Collins-Praino LE, Paul NE, Ledgard F et al (2013) Deep brain stimulation of the subthalamic nucleus reverses oral tremor in pharmacological models of parkinsonism: interaction with the effects of adenosine A2A antagonism. Eur J Neurosci 38:2183–2191

    Article  PubMed  Google Scholar 

  • Correa M, Wisniecki A, Betz A et al (2004) The adenosine A2A antagonist KF17837 reverses the locomotor suppression and tremulous jaw movements induced by haloperidol in rats: possible relevance to parkinsonism. Behav Brain Res 148:47–54

    Article  CAS  PubMed  Google Scholar 

  • Cousins MS, Carriero DL, Salamone JD (1997) Tremulous jaw movements induced by the acetylcholinesterase inhibitor tacrine: effects of antiparkinsonian drugs. Eur J Pharmacol 322:137–145

    Article  CAS  PubMed  Google Scholar 

  • DeLong M (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    Article  CAS  PubMed  Google Scholar 

  • DeLong MR, Wichmann T (2007) Circuits and circuit disorders of the basal ganglia. Arch Neurol 64:20–24

    Article  PubMed  Google Scholar 

  • Delwaide PJ (2001) Parkinsonian rigidity. Funct Neurol 16:147–156

    CAS  PubMed  Google Scholar 

  • Deuschl G, Papengut F, Hellriegel H (2012) The phenomenology of parkinsonian tremor. Parkinsonism Relat Disord 18:S87–S89

    Article  PubMed  Google Scholar 

  • Dorsey ER, Constantinescu R, Thompson JP et al (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68:384–386

    Article  CAS  PubMed  Google Scholar 

  • Drabczyńska A, Zygmunt M, Sapa J et al (2011) Antiparkinsonian effects of novel adenosine A(2A) receptor antagonists. Arch Pharm (Weinheim) 344:20–27

    Article  CAS  Google Scholar 

  • Duty S, Jenner P (2011) Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol 164:1357–1391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fenu S, Pinna A, Ongini E et al (1997) Adenosine A2A receptor antagonism potentiates L-DOPA-induced turning behaviour and c-fos expression in 6-hydroxydopamine-lesioned rats. Eur J Pharmacol 321:143–147

    Article  CAS  PubMed  Google Scholar 

  • Ferré S, von Euler G, Johansson B et al (1991) Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc Natl Acad Sci USA 88:7238–7241

    Article  PubMed Central  PubMed  Google Scholar 

  • Ferré S, Fredholm BB, Morelli M et al (1997) Adenosine dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 20:482–487

    Article  PubMed  Google Scholar 

  • Ferré S, Quiroz C, Woods AS et al (2008) An update on adenosine A2A-dopamine D2 receptor interactions. Implications for the function of G protein-coupled receptors. Curr Pharm Des 14:1468–1474

    Article  PubMed Central  PubMed  Google Scholar 

  • Fredduzzi S, Moratalla R, Monopoli A et al (2002) Persistent behavioral sensitization to chronic L-DOPA requires A2A adenosine receptors. J Neurosci 22:1054–1062

    CAS  PubMed  Google Scholar 

  • Fredholm BB, Battig K, Holmen J et al (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133

    CAS  PubMed  Google Scholar 

  • Galvan A, Wichmann T (2008) Pathophysiology of parkinsonism. Clin Neurophysiol 119:1459–1474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gerevich Z, Wirkner K, Illes P (2002) Adenosine A2A receptors inhibit the N-methyl-D-aspartate component of excitatory synaptic currents in rat striatal neurons. Eur J Pharmacol 451:161–164

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR, Bolam JP (2010) The neuroanatomical organization of the basal ganglia part A. In: Handbook of basal ganglia structure and function, vol 1. Elsevier Science, pp 3–28

    Google Scholar 

  • Gerlach M, Riederer P (1996) Animal models of Parkinson’s disease: an empirical comparison with the phenomenology of the disease in man. J Neural Transm 103:987–1041

    Article  CAS  PubMed  Google Scholar 

  • Gillespie RJ, Bamford SJ, Botting R et al (2009) Antagonists of the human A2A adenosine receptor. 4. Design, synthesis, and preclinical evaluation of 7-Aryltriazolo[4,5-d]pyrimidines. J Med Chem 52:33–47

    Article  CAS  PubMed  Google Scholar 

  • Grondin R, Bedard PJ, Hadj Tahar A et al (1999) Antiparkinsonian effect of a new selective adenosine A2A receptor antagonist in MPTP-treated monkeys. Neurology 52:1673–1677

    Article  CAS  PubMed  Google Scholar 

  • Halldner L, Lozza G, Lindström K et al (2000) Lack of tolerance to motor stimulant effects of a selective adenosine A(2A) receptor antagonist. Eur J Pharmacol 406:345–354

    Article  CAS  PubMed  Google Scholar 

  • Henry B, Crossman AR, Brotchie JM (1998) Characterization of enhanced behavioral responses to L-DOPA following repeated administration in the 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. Exp Neurol 151:334–342

    Article  CAS  PubMed  Google Scholar 

  • Hettinger BD, Lee A, Linden J et al (2001) Ultrastructural localization of the adenosine A2A receptors suggests multiple cellular sites for modulation of GABAergic neurons in rat striatum. J Comp Neurol 431:331–346

    Article  CAS  PubMed  Google Scholar 

  • Higley MJ, Sabatini BL (2010) Competitive regulation of synaptic Ca2+ influx by D2 dopamine and A2A adenosine receptors. Nat Neurosci 13:958–966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hillion J, Canals M, Torvinen M et al (2002) Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J Biol Chem 277:18091–18097

    Article  CAS  PubMed  Google Scholar 

  • Hodgson RA, Bertorelli R, Varty GB et al (2009) Characterization of the potent and highly selective A2A receptor antagonists preladenant and SCH 412348 in rodent models of movement disorders and depression. J Pharmacol Exp Ther 33:294–303

    Article  CAS  Google Scholar 

  • Hodgson RA, Bedard PJ, Varty GB et al (2010) Preladenant, a selective A(2A) receptor antagonist, is active in primate models of movement disorders. Exp Neurol 225:384–390

    Article  CAS  PubMed  Google Scholar 

  • Horstink M, Tolosa E, Bonuccelli U et al (2006) Review of the therapeutic management of Parkinson’s disease. Report of a joint task force of the European Federation of Neurological Societies (EFNS) and the Movement Disorder Society-European Section (MDS-ES). Part II: late (complicated) Parkinson’s disease. Eur J Neurol 13(11):1186–1202

    Article  CAS  PubMed  Google Scholar 

  • Ishiwari K, Betz A, Weber S et al (2005) Validation of the tremulous jaw movement model for assessment of the motor effects of typical and atypical antipychotics: effects of pimozide (Orap) in rats. Pharmacol Biochem Behav 80:351–362

    Article  CAS  PubMed  Google Scholar 

  • Jellinger KA (2002) Recent developments in the pathology of Parkinson’s disease. J Neural Transm 62:347–376

    Article  CAS  Google Scholar 

  • Jiménez MC, Vingerhoets FJ (2012) Tremor revisited: treatment of PD tremor. Parkinsonism Relat Disord 18:S93–S95

    Article  PubMed  Google Scholar 

  • Jones CK, Bubser M, Thompson AD et al (2012) The metabotropic glutamate receptor 4-positive allosteric modulator VU0364770 produces efficacy alone and in combination with L-DOPA or an adenosine 2A antagonist in preclinical rodent models of Parkinson’s disease. J Pharmacol Exp Ther 340:404–421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones N, Bleickardt C, Mullins D et al (2013) A2A receptor antagonists do not induce dyskinesias in drug-naive or L-dopa sensitized rats. Brain Res Bull 98:163–169

    Article  CAS  PubMed  Google Scholar 

  • Kanda T, Shiozaki S, Shimada J et al (1994) KF17837: a novel selective adenosine A2A receptor antagonist with anticataleptic activity. Eur J Pharmacol 256:263–268

    Article  CAS  PubMed  Google Scholar 

  • Kanda T, Jackson MJ, Smith LA et al (1998) Adenosine A2A antagonist: a novel antiparkinsonian agent that does not provoke dyskinesia in parkinsonian monkeys. Ann Neurol 43:507–513

    Article  CAS  PubMed  Google Scholar 

  • Kanda T, Jackson MJ, Smith LA et al (2000) Combined use of the adenosine A(2A) antagonist KW-6002 with L-DOPA or with selective D1 or D2 dopamine agonists increases antiparkinsonian activity but not dyskinesia in MPTP-treated monkeys. Exp Neurol 162:321–327

    Article  CAS  PubMed  Google Scholar 

  • Koga K, Kurokawa M, Ochi M et al (2000) Adenosine A(2A) receptor antagonists KF17837 and KW-6002 potentiate rotation induced by dopaminergic drugs in hemi-Parkinsonian rats. Eur J Pharmacol 408:249–255

    Article  CAS  PubMed  Google Scholar 

  • Kurokawa M, Koga K, Kase H et al (1996) Adenosine A2a receptor-mediated modulation of striatal acetylcholine release in vivo. J Neurochem 66:1882–1888

    Article  CAS  PubMed  Google Scholar 

  • Lee RG (1989) Pathophysiology of rigidity and akinesia in Parkinson’s disease. Eur Neurol 29:13–18

    Article  CAS  PubMed  Google Scholar 

  • Lorenc-Koci E, Ossowska K, Wardas J et al (1995) Does reserpine induce parkinsonian rigidity? J Neural Transm Park Dis Dement Sect 9:211–223

    Article  CAS  PubMed  Google Scholar 

  • Lorenc-Koci E, Wolfarth S, Ossowska K (1996) Haloperidol-increased muscle tone in rats as a model of parkinsonian rigidity. Exp Brain Res 109:268–276

    Article  CAS  PubMed  Google Scholar 

  • Łukasiewicz S, Błasiak E, Faron-Górecka A et al (2007) Fluorescence studies of homooligomerization of adenosine A2A and serotonin 5-HT1A receptors reveal the specificity of receptor interactions in the plasma membrane. Pharmacol Rep 59:379–392

    PubMed  Google Scholar 

  • Lundblad M, Andersson M, Winkler C et al (2002) Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. Eur J Neurosci 15:120–132

    Article  CAS  PubMed  Google Scholar 

  • Lundblad M, Vaudano E, Cenci MA (2003) Cellular and behavioural effects of the adenosine A2a receptor antagonist KW-6002 in a rat model of l-DOPA-induced dyskinesia. J Neurochem 84:1398–1410

    Article  CAS  PubMed  Google Scholar 

  • Mandhane SN, Chopde CT, Ghosh AK (1997) Adenosine A2 receptors modulate haloperidol-induced catalepsy in rats. Eur J Pharmacol 328:135–141

    Article  CAS  PubMed  Google Scholar 

  • Marcellino D, Lindqvist E, Schneider M et al (2010) Chronic A2A antagonist treatment alleviates parkinsonian locomotor deficiency in MitoPark mice. Neurobiol Dis 40:460–466

    Article  CAS  PubMed  Google Scholar 

  • Marin C, Aguilar E, Bonastre M et al (2005) Early administration of entacapone prevents levodopa-induced motor fluctuations in hemiparkinsonian rats. Exp Neurol 192:184–193

    Article  CAS  PubMed  Google Scholar 

  • Marsden CD (1994) Parkinson’s disease. J Neurol Neurosurg Psychiatry 57:672–681

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meredith GE, Kang UJ (2006) Behavioral models of Parkinson’s disease in rodents: a new look at an old problem. Mov Disord 21:1595–1606

    Article  PubMed  Google Scholar 

  • Neustadt BR, Hao J, Lindo N et al (2007) Potent, selective, and orally active adenosine A2A receptor antagonists: arylpiperazine derivatives of pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines. Bioorg Med Chem Lett 17:1376–1380

    Article  CAS  PubMed  Google Scholar 

  • Obeso JA, Rodriguez-Oroz MC, Rodriguez M et al (2000) Pathophysiology of the basal ganglia in Parkinson’s disease. Trends Neurosci 23:S8–S19

    Article  CAS  PubMed  Google Scholar 

  • Ochi M, Shiozaki S, Kase H (2004) Adenosine A2A receptor-mediated modulation of GABA and glutamate release in the output regions of the basal ganglia in a rodent model of Parkinson’s disease. Neuroscience 127:223–231

    Article  CAS  PubMed  Google Scholar 

  • Oh JD, Chase TN (2002) Glutamate-mediated striatal dysregulation and the pathogenesis of motor response complications in Parkinson’s disease. Amino Acids 23:133–139

    Article  CAS  PubMed  Google Scholar 

  • Olah ME, Stiles GL (2000) The role of receptor structure in determining adenosine receptor activity. Pharmacol Ther 85:55–75

    Article  CAS  PubMed  Google Scholar 

  • Olanow CW, Agid Y, Mizuno Y et al (2004) Levodopa in the treatment of Parkinson’s disease: current controversies. Mov Disord 19:997–1005

    Article  PubMed  Google Scholar 

  • Olanow CW, Stern MB, Sethi K (2009) The scientific and clinical basis for the treatment of Parkinson disease. Neurology 72:S1–S136

    Article  PubMed  Google Scholar 

  • Olsson M, Nikkhah G, Bentlage C et al (1995) Forelimb akinesia in the rat Parkinson model: differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test. J Neurosci 15:3863–3875

    CAS  PubMed  Google Scholar 

  • Pinna A, Morelli M (2014) A critical evaluation of behavioral rodent models of motor impairment used for screening of antiparkinsonian activity: the case of adenosine A(2A) receptor antagonists. Neurotox Res 25:392–401

    Article  CAS  PubMed  Google Scholar 

  • Pinna A, Di Chiara G, Wardas J et al (1996) Blockade of A2a adenosine receptors positively modulates turning behaviour and c-Fos expression induced by D1 agonists in dopamine-denervated rats. Eur J Neurosci 8:1176–1181

    Article  CAS  PubMed  Google Scholar 

  • Pinna A, Fenu S, Morelli M (2001) Motor stimulant effects of the adenosine A(2A) receptor antagonist SCH 58261 do not develop tolerance after repeated treatments in 6-hydroxydopamine-lesioned rats. Synapse 39:233–238

    Article  CAS  Google Scholar 

  • Pinna A, Corsi C, Carta AR et al (2002) Modification of adenosine extracellular levels and adenosine A(2A) receptor mRNA by dopamine denervation. Eur J Pharmacol 446:75–82

    Article  CAS  PubMed  Google Scholar 

  • Pinna A, Volpini R, Cristalli G et al (2005) New adenosine A2A receptor antagonists: actions on Parkinson’s disease models. Eur J Pharmacol 512:157–164

    Article  CAS  PubMed  Google Scholar 

  • Pinna A, Pontis S, Borsini F et al (2007) Adenosine A(2A) receptor antagonists improve deficits in initiation of movement and sensory motor integration in the unilateral 6-hydroxydopamine rat model of Parkinson’s disease. Synapse 61:606–614

    Article  CAS  PubMed  Google Scholar 

  • Pinna A, Tronci E, Schintu N et al (2010) A new ethyladenine antagonist of adenosine A(2A) receptors: behavioral and biochemical characterization as an antiparkinsonian drug. Neuropharmacology 58:613–623

    Article  CAS  PubMed  Google Scholar 

  • Pollack AE, Fink JS (1996) Synergistic interaction between an adenosine antagonist and a D1 dopamine agonist on rotational behaviour and striatal c-Fos induction in 6-hydroxydopamine-lesioned rats. Brain Res 743:124–130

    Article  CAS  PubMed  Google Scholar 

  • Rose S, Jackson MJ, Smith LA et al (2006) The novel adenosine A2a receptor antagonist ST1535 potentiates the effects of a threshold dose of L-DOPA in MPTP treated common marmosets. Eur J Pharmacol 546:82–87

    Article  CAS  PubMed  Google Scholar 

  • Rose S, Ramsay Croft N, Jenner P (2007) The novel adenosine A2a antagonist ST1535 potentiates the effects of a threshold dose of l-dopa in unilaterally 6-OHDA-lesioned rats. Brain Res 1133:110–114

    Article  CAS  PubMed  Google Scholar 

  • Rosin DL, Robeva A, Woodard RL et al (1998) Immunohistochemical localization of adenosine A2A receptors in the rat central nervous system. J Comp Neurol 401:163–186

    Article  CAS  PubMed  Google Scholar 

  • Salamone JD, Mayorga AJ, Trevitt JT et al (1998) Tremulous jaw movements in rats: a model of parkinsonian tremor. Prog Neurobiol 56:591–611

    Article  CAS  PubMed  Google Scholar 

  • Salamone JD, Betz AJ, Ishiwari K et al (2008) Tremorolytic effects of adenosine A2A antagonists: implications for parkinsonism. Front Biosci 13:3594–3605

    Article  CAS  PubMed  Google Scholar 

  • Salamone JD, Collins-Praino LE, Pardo M et al (2013) Conditional neural knockout of the adenosine A(2A) receptor and pharmacological A(2A) antagonism reduce pilocarpine-induced tremulous jaw movements: studies with a mouse model of parkinsonian tremor. Eur Neuropsychopharmacol 23:972–977

    Article  CAS  PubMed  Google Scholar 

  • Schallert T, Fleming SM, Leasure JL et al (2000) CNS plasticity and assessment of forelimb sensiromotor outcome in unilateral rat model of stroke, cortical ablation, parkinsonism, and spinal cord injury. Neuropharmacology 39:777–787

    Article  CAS  PubMed  Google Scholar 

  • Schapira AH (2006) Etiology of Parkinson’s disease. Neurology 66:S10–S23

    Article  PubMed  Google Scholar 

  • Schwarting RK, Huston JP (1996) The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Prog Neurobiol 50:275–331

    Article  CAS  PubMed  Google Scholar 

  • Shindou T, Richardson PJ, Mori A et al (2003) Adenosine modulates the striatal GABAergic inputs to the globus pallidus via adenosine A2A receptors in rats. Neurosci Lett 352:167–170

    Article  CAS  PubMed  Google Scholar 

  • Shiozaki S, Ichikawa S, Nakamura J et al (1999) Actions of adenosine A2A receptor antagonist KW-6002 on drug-induced catalepsy and hypokinesia caused by reserpine or MPTP. Psychopharmacology 147:90–95

    Article  CAS  PubMed  Google Scholar 

  • Shook BC, Rassnick S, Osborne MC et al (2010) In vivo characterization of a dual adenosine A2A/A1 receptor antagonist in animal models of Parkinson’s disease. J Med Chem 53:8104–8115

    Article  CAS  PubMed  Google Scholar 

  • Shook BC, Chakravarty D, Barbay JK et al (2013) Substituted thieno[2,3-d]pyrimidines as adenosine A2A receptor antagonists. Bioorg Med Chem Lett 23:2688–2691

    Article  CAS  PubMed  Google Scholar 

  • Simola N, Fenu S, Baraldi PG et al (2004) Blockade of adenosine A2A receptors antagonizes parkinsonian tremor in the rat tacrine model by an action on specific striatal regions. Exp Neurol 189:182–188

    Article  CAS  PubMed  Google Scholar 

  • Simola N, Fenu S, Baraldi PG et al (2006) Dopamine and adenosine receptor interaction as basis for the treatment of Parkinson’s disease. J Neurol Sci 248:48–52

    Article  CAS  PubMed  Google Scholar 

  • Simola N, Morelli M, Carta AR (2007) The 6-hydroxydopamine model of Parkinson’s disease. Neurotox Res 11:151–167

    Article  CAS  PubMed  Google Scholar 

  • Simola N, Morelli M, Pinna A (2008) Adenosine A2A receptor antagonists and Parkinson’s disease: state of the art and future directions. Curr Pharm Des 14:1475–1489

    Article  CAS  PubMed  Google Scholar 

  • Smith KM, Browne SE, Jayaraman S et al (2014) Effects of the selective adenosine A2A receptor antagonist, SCH 412348, on the parkinsonian phenotype of MitoPark mice. Eur J Pharmacol 728:31–38

    Article  CAS  PubMed  Google Scholar 

  • Stasi MA, Borsini F, Varani K et al (2006) ST 1535: a preferential A2A adenosine receptor antagonist. Int J Neuropsychopharmacol 9:575–584

    Article  CAS  PubMed  Google Scholar 

  • Svenningsson P, Moine C L, Fisone G et al (1999) Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog Neurobiol 59:355–396

    Article  CAS  PubMed  Google Scholar 

  • Tozzi A, de Iure A, Di Filippo M et al (2011) The distinct role of medium spiny neurons and cholinergic interneurons in the D2/A2A receptor interaction in the striatum: implications for Parkinson’s disease. J Neurosci 31:1850–1862

    Article  CAS  PubMed  Google Scholar 

  • Tronci E, Simola N, Borsini F et al (2007) Characterization of the antiparkinsonian effects of the new adenosine A2A receptor antagonist ST1535: acute and subchronic studies in rats. Eur J Pharmacol 566:94–102

    Article  CAS  PubMed  Google Scholar 

  • Ungerstedt U (1968) 6-hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5:107–110

    Article  CAS  PubMed  Google Scholar 

  • Van Den Eeden SK, Tanner CM, Bernstein AL et al (2003) Incidence of Parkinson’s disease: variation by age, gender, and race/ethnicity. Am J Epidemiol 157:1015–1022

    Article  PubMed  Google Scholar 

  • Varty GB, Hodgson RA, Pond AJ et al (2008) The effects of adenosine A2A receptor antagonists on haloperidol-induced movement disorders in primates. Psychopharmacology (Berl) 200:393–401

    Article  CAS  Google Scholar 

  • Vellucci SV, Sirinathsinghji DJ, Richardson PJ (1993) Adenosine A2 receptor regulation of apomorphine-induced turning in rats with unilateral striatal dopamine denervation. Psychopharmacology 111:383–388

    Article  CAS  PubMed  Google Scholar 

  • Villanueva-Toledo J, Moo-Puc RE, Góngora-Alfaro JL (2003) Selective A2A, but not A1 adenosine antagonists enhance the anticataleptic action of trihexyphenidyl in rats. Neurosci Lett 346:1–4

    Article  CAS  PubMed  Google Scholar 

  • Wardas J (2003) Synergistic effect of SCH 58261, an adenosine A2A receptor antagonist, and L-DOPA on the reserpine-induced muscle rigidity in rats. Pol J Pharmacol 55:155–164

    CAS  PubMed  Google Scholar 

  • Wardas J, Konieczny J, Lorenc-Koci E (2001) SCH 58261, an A(2A) adenosine receptor antagonist, counteracts parkinsonian-like muscle rigidity in rats. Synapse 41:160–171

    Article  CAS  PubMed  Google Scholar 

  • Wardas J, Pietraszek M, Dziedzicka-Wasylewska M (2003) SCH 58261, a selective adenosine A2A receptor antagonist, decreases the haloperidol-enhanced proenkephalin mRNA expression in the rat striatum. Brain Res 977:270–277

    Article  CAS  PubMed  Google Scholar 

  • Weiss SM, Benwell K, Cliffe IA et al (2003) Discovery of nonxanthine adenosine A2A receptor antagonists for the treatment of Parkinson’s disease. Neurology 61:S101–S106

    Article  CAS  PubMed  Google Scholar 

  • Wolfarth S, Konieczny J, Smiałowska M et al (1996) Influence of 6-hydroxydopamine lesion of the dopaminergic nigrostriatal pathway on the muscle tone and electromyographic activity measured during passive movements. Neuroscience 74:985–996

    Article  CAS  PubMed  Google Scholar 

  • Xiao D, Bastia E, Xu YH (2006) Forebrain adenosine A2A receptors contribute to L-3,4-dihydroxyphenylalanine-induced dyskinesia in hemiparkinsonian mice. J Neurosci 26:13548–13555

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Bastia E, Schwarzschild M (2005) Therapeutic potential of adenosine A(2A) receptor antagonists in Parkinson’s disease. Pharmacol Ther 105:267–310

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Pinna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pinna, A. (2015). Adenosine A2A Receptor Antagonists as Drugs for Symptomatic Control of Parkinson’s Disease in Preclinical Studies. In: Morelli, M., Simola, N., Wardas, J. (eds) The Adenosinergic System. Current Topics in Neurotoxicity, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-20273-0_7

Download citation

Publish with us

Policies and ethics