Skip to main content
Log in

NDP-MSH inhibits neutrophil migration through nicotinic and adrenergic receptors in experimental peritonitis

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Melanocortin is a potent anti-inflammatory molecule. However, little is known about the effect of melanocortin on acute inflammatory processes such as neutrophil migration. In the present study, we investigated the ability of [Nle4, D-Phe7]-melanocyte-stimulating hormone (NDP-MSH), a semisynthetic melanocortin compound, in the inhibition of neutrophil migration in carrageenin-induced peritonitis model. Herein, subcutaneous pretreatment with NDP-MSH decreased neutrophil trafficking in the peritoneal cavity in a dose-dependent manner. NDP-MSH inhibited vascular leakage, leukocyte rolling, and adhesion and reduced peritoneal macrophage inflammatory protein 2, but not TNF-alpha, IL-1beta, IL-10, and keratinocyte-derived chemokine production. In addition, the effect on neutrophil migration was reverted by the pretreatment with both propranolol (a nonselective beta-adrenergic antagonist) and mecamylamine (a nonselective nicotinic antagonist) but not by splenectomy surgery. Moreover, NDP-MSH intracerebroventricular administration inhibited neutrophil migration, indicating participation of the central nervous system. Our results propose that the NDP-MSH effect may be due to a spleen-independent neuro-immune pathway that efficiently regulates excessive neutrophil recruitment to tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alves-Filho JC, Benjamim C, Tavares-Murta BM, Cunha FQ (2005) Failure of neutrophil migration toward infectious focus in severe sepsis: a critical event for the outcome of this syndrome. Mem Inst Oswaldo Cruz 100(Suppl I):223–226

    Article  PubMed  CAS  Google Scholar 

  • Alves-Filho JC, Freitas A, Souto FO, Spiller F, Paula-Neto H, Silva JS, Gazzinelli RT, Teixeira MM, Ferreira SH, Cunha FQ (2009) Regulation of chemokine receptor by Toll-like receptor 2 is critical to neutrophil migration and resistance to polymicrobial sepsis. Proc Natl Acad Sci 106:4018–4023

    Article  PubMed  CAS  Google Scholar 

  • Andersson U, Tracey KJ (2012) Neural reflexes in inflammation and immunity. J Exp Med 209(6):1057–1068

    Article  PubMed  CAS  Google Scholar 

  • Arraes SM, Freitas MS, da Silva SV, de Paula Neto HA, Alves-Filho JC, Auxiliadora Martins M, Basile-Filho A, Tavares-Murta BM, Barja-Fidalgo C, Cunha FQ (2006) Impaired neutrophil chemotaxis in sepsis associates with GRK expression and inhibition of actin assembly and tyrosine phosphorylation. Blood 108(9):2906–2913

    Article  PubMed  CAS  Google Scholar 

  • Bassi GS, Kanashiro A, Santin FM, de Souza GE, Nobre MJ, Coimbra NC (2012) Lipopolysaccharide-induced sickness behaviour evaluated in different models of anxiety and innate fear in rats. Basic Clin Pharmacol Toxicol 110(4):359–369

    Article  PubMed  CAS  Google Scholar 

  • Bitto A, Polito F, Altavilla D, Irrera N, Giuliani D, Ottani A, Minutoli L, Spaccapelo L, Galantucci M, Lodi R, Guzzo G, Guarini S, Squadrito F (2011) Melanocortins protect against multiple organ dysfunction syndrome in mice. Br J Pharmacol 162(4):917–928

    Article  PubMed  CAS  Google Scholar 

  • Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405(6785):458–462

    Article  PubMed  CAS  Google Scholar 

  • Catania A, Rajora N, Capsoni F, Minonzio F, Star RA, Lipton JM (1996) The neuropeptide alpha-MSH has specific receptors on neutrophils and reduces chemotaxis in vitro. Peptides 17(4):675–679

    Article  PubMed  CAS  Google Scholar 

  • Catania A, Gatti S, Colombo G, Lipton JM (2004) Targeting melanocortin receptors as a novel strategy to control inflammation. Pharmacol Rev 56(1):1–29

    Article  PubMed  CAS  Google Scholar 

  • Cunha FQ, Ferreira SH (1986) The release of a neutrophil chemotactic factor from peritoneal macrophages by endotoxin: inhibition by glucocorticoids. Eur J Pharmacol 129(1–2):65–76

    Article  PubMed  CAS  Google Scholar 

  • Dal Secco D, Paron JA, de Oliveira SH, Ferreira SH, Silva JS, Cunha FQ (2003) Neutrophil migration in inflammation: nitric oxide inhibits rolling, adhesion and induces apoptosis. Nitric Oxide 9(3):153–164

    Article  PubMed  CAS  Google Scholar 

  • Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56

    Article  PubMed  CAS  Google Scholar 

  • Delgado M, Ganea D (2008) Anti-inflammatory neuropeptides: a new class of endogenous immunoregulatory agents. Brain Behav Immun 22(8):1146–1151

    Article  PubMed  CAS  Google Scholar 

  • Elenkov IJ, Haskó G, Kovács KJ, Vizi ES (1995) Modulation of lipopolysaccharide-induced tumor necrosis factor-alpha production by selective alpha- and beta-adrenergic drugs in mice. J Neuroimmunol 61(2):123–131

    Article  PubMed  CAS  Google Scholar 

  • Giuliani D, Mioni C, Bazzani C, Zaffe D, Botticelli AR, Capolongo S, Sabba A, Galantucci M, Iannone A, Grieco P, Novellino E, Colombo G, Tomasi A, Catania A, Guarini S (2007) Selective melanocortin MC4 receptor agonists reverse haemorrhagic shock and prevent multiple organ damage. Br J Pharmacol 150(5):595–603

    Article  PubMed  CAS  Google Scholar 

  • Giuliani D, Ottani A, Altavilla D, Bazzani C, Squadrito F, Guarini S (2010) Melanocortins and the cholinergic anti-inflammatory pathway. Adv Exp Med Biol 681:71–87

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Rey E, Delgado-Maroto V, Souza Moreira L, Delgado M (2010) Neuropeptides as therapeutic approach to autoimmune diseases. Curr Pharm Des 16(28):3158–3172

    Article  PubMed  CAS  Google Scholar 

  • Grigoleit JS, Kullmann JS, Wolf OT, Hammes F, Wegner A, Jablonowski S, Engler H, Gizewski E, Oberbeck R, Schedlowski M (2011) Dose-dependent effects of endotoxin on neurobehavioral functions in humans. PLoS One 6(12):e28330

    Article  PubMed  CAS  Google Scholar 

  • Haley TJ, McCormick WG (1957) Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. Br J Pharmacol Chemother 12(1):12–15

    Article  PubMed  CAS  Google Scholar 

  • Harding M, Kubes P (2012) Innate immunity in the vasculature: interactions with pathogenic bacteria. Curr Opin Microbiol 15(1):85–91

    Article  PubMed  CAS  Google Scholar 

  • Huston JM, Ochani M, Rosas-Ballina M, Liao H, Ochani K, Pavlov VA, Gallowitsch-Puerta M, Ashok M, Czura CJ, Foxwell B, Tracey KJ, Ulloa L (2006) Splenectomy inactivates the cholinergic anti-inflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med 203(7):1623–1628

    Article  PubMed  CAS  Google Scholar 

  • Huston JM, Rosas-Ballina M, Xue X, Dowling O, Ochani K, Ochani M, Yeboah MM, Chatterjee PK, Tracey KJ, Metz CN (2009) Cholinergic neural signals to the spleen down-regulate leukocyte trafficking via CD11b. J Immunol 183(1):552–559

    Article  PubMed  CAS  Google Scholar 

  • Kanashiro A, Pessini AC, Machado RR, Malvar Ddo C, Aguiar FA, Soares DM, do Vale ML, de Souza GE (2009) Characterization and pharmacological evaluation of febrile response on zymosan-induced arthritis in rats. Am J Physiol Regul Integr Comp Physiol 296(5):1631–1640

    Article  Google Scholar 

  • Karimi K, Bienenstock J, Wang L, Forsythe P (2010) The vagus nerve modulates CD4+ T cell activity. Brain Behav Immun 24(2):316–323

    Article  PubMed  CAS  Google Scholar 

  • Kovach MA, Standiford TJ (2012) The function of neutrophils in sepsis. Curr Opin Infect Dis 25(3):321–327

    Article  PubMed  CAS  Google Scholar 

  • Laurin LP, Brissette MJ, Lepage S, Cailhier JF (2012) Regulation of experimental peritonitis: a complex orchestration. Nephron Exp Nephrol 120(1):41–46

    Article  Google Scholar 

  • Mercer-Jones MA, Shrotri MS, Heinzelmann M, Peyton JC, Cheadle WG (1999) Regulation of early peritoneal neutrophil migration by macrophage inflammatory protein-2 and mast cells in experimental peritonitis. J Leukoc Biol 65(2):249–255

    PubMed  CAS  Google Scholar 

  • Németh T, Mócsai A (2012) The role of neutrophils in autoimmune diseases. Immunol Lett 143(1):9–19

    Article  PubMed  Google Scholar 

  • Ondicova K, Mravec B (2010) Multilevel interactions between the sympathetic and parasympathetic nervous systems: a minireview. Endocr Regul 44(2):69–75

    Article  PubMed  CAS  Google Scholar 

  • Ortiz-Pomales YT, Krzyzaniak M, Coimbra R, Baird A, Eliceiri BP (2013) Vagus nerve stimulation blocks vascular permeability following burn in both local and distal sites. Burns 39(1):68–75

    Article  PubMed  Google Scholar 

  • Ottani A, Giuliani D, Galantucci M, Spaccapelo L, Novellino E, Grieco P, Jochem J, Guarini S (2010) Melanocortins counteract inflammatory and apoptotic responses to prolonged myocardial ischemia/reperfusion through a vagus nerve-mediated mechanism. Eur J Pharmacol 637(1–3):124–130

    Article  PubMed  CAS  Google Scholar 

  • Pavlov VA, Parrish WR, Rosas-Ballina M, Ochani M, Puerta M, Ochani K, Chavan S, Al-Abed Y, Tracey KJ (2009) Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav Immun 23(1):41–45

    Article  PubMed  CAS  Google Scholar 

  • Rosas-Ballina M, Olofsson PS, Ochani M, Valdés-Ferrer SI, Levine YA, Reardon C, Tusche MW, Pavlov VA, Andersson U, Chavan S, Mak TW, Tracey KJ (2011) Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334(6052):98–101

    Article  PubMed  CAS  Google Scholar 

  • Souza GE, Ferreira SH (1985) Blockade by antimacrophage serum of the migration of PMN neutrophils into the inflamed peritoneal cavity. Agents Actions 17(1):97–103

    Article  PubMed  Google Scholar 

  • Steinman L (2004) Elaborate interactions between the immune and nervous systems. Nat Immunol 5(6):575–581

    Article  PubMed  CAS  Google Scholar 

  • Sternberg EM (2006) Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol 6(4):318–328

    Article  PubMed  CAS  Google Scholar 

  • Thurston G, Rudge JS, Ioffe E, Zhou H, Ross L, Croll SD, Glazer N, Holash J, Mcdonald DM, Yancopoulos G (2000) Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 6:460–463

    Article  PubMed  CAS  Google Scholar 

  • Tracey KJ (2009) Reflex control of immunity. Nat Rev Immunol 9(6):418–428

    Article  PubMed  CAS  Google Scholar 

  • Ulloa L (2005) The vagus nerve and the nicotinic anti-inflammatory pathway. Nat Rev Drug Discov 4(8):673–684

    Article  PubMed  CAS  Google Scholar 

  • Valério DA, Cunha TM, Arakawa NS, Lemos HP, Da Costa FB, Parada CA, Ferreira SH, Cunha FQ, Verri WA Jr (2007) Anti-inflammatory and analgesic effects of the sesquiterpene lactone budlein A in mice: inhibition of cytokine production-dependent mechanism. Eur J Pharmacol 562(1–2):155–163

    Article  PubMed  Google Scholar 

  • van Westerloo DJ, Giebelen IA, Meijers JC, Daalhuisen J, de Vos AF, Levi M, van der Poll T (2006) Vagus nerve stimulation inhibits activation of coagulation and fibrinolysis during endotoxemia in rats. J Thromb Haemost 4(9):1997–2002

    Article  PubMed  Google Scholar 

  • Vida G, Peña G, Deitch EA, Ulloa L (2011a) α7-cholinergic receptor mediates vagal induction of splenic norepinephrine. J Immunol 186(7):4340–4346

    Article  PubMed  CAS  Google Scholar 

  • Vida G, Peña G, Kanashiro A, Thompson-Bonilla Mdel R, Palange D, Deitch EA, Ulloa L (2011b) β2-Adrenoreceptors of regulatory lymphocytes are essential for vagal neuromodulation of the innate immune system. FASEB J 25(12):4476–4485

    Article  PubMed  CAS  Google Scholar 

  • Zhang XW, Liu Q, Wang Y, Thorlacius H (2001) CXC chemokines, MIP-2 and KC, induce P-selectin-dependent neutrophil rolling and extravascular migration in vivo. Br J Pharmacol 133(3):413–421

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (grant numbers 150718/2010-1 and 478504/2010-1) and the Fundação de Amparo a Pesquisa do Estado de São Paulo (grant numbers 2011/11931-0, 2011/20343-4, and 2012/04237-2). We thank Ieda R. Santos, Sérgio R. Rosa, and Giuliana Bertozi for technical assistance and Dr. Carlos Henrique Cardoso Serezani for his critical reading of the manuscript.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Kanashiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figueiredo, J., Ferreira, A.E., Silva, R.L. et al. NDP-MSH inhibits neutrophil migration through nicotinic and adrenergic receptors in experimental peritonitis. Naunyn-Schmiedeberg's Arch Pharmacol 386, 311–318 (2013). https://doi.org/10.1007/s00210-013-0834-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-013-0834-7

Keywords

Navigation