Skip to main content
Log in

A Mean Field Limit for the Vlasov–Poisson System

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We present a probabilistic proof of the mean field limit and propagation of chaos N-particle systems in three dimensions with positive (Coulomb) or negative (Newton) 1/r potentials scaling like 1/N and an N-dependent cut-off which scales like \({N^{-1/3+ \epsilon}}\). In particular, for typical initial data, we show convergence of the empirical distributions to solutions of the Vlasov–Poisson system with either repulsive electrical or attractive gravitational interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boers, N., Pickl, P.: On mean field limits for dynamical systems. J. Stat. Phys., 164(1), 1–16, 2015

  2. Braun W., Hepp K.: The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles. Commun. Math. Phys., 56(2), 101–113 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Dobrushin R.L.: Vlasov equations. Funct. Anal. Its Appl. 13(2), 115–123 (1979)

    Article  MATH  Google Scholar 

  4. Fournier N., Guillin A.: On the rate of convergence in wasserstein distance of the empirical measure. Probab. Theory Relat. Fields 162, 1–32 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Grünbaum F.A.: Propagation of chaos for the Boltzmann equation. Arch. Ration. Mech. Anal., 42, 323–345 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hauray, M., Jabin, P.-E.: Particles approximations of Vlasov equations with singular forces: Propagation of chaos. Annales scientifiques de l’École Normale Supérieure 48(4), 891–940, 2015

  7. Horst E.: Global strong solutions of Vlasov’s equation—necessary and sufficient conditions for their existence. Banach Center Publ., 19(1), 143–153 (1987)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Horst E.: On the asymptotic growth of the solutions of the Vlasov-Poisson system. Math. Methods Appl. Sci., 16, 75–85 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Kac, M.: Foundations of kinetic theory. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol III, pp. 171–197. University of California Press, Berkeley, 1956

  10. Kiessling M.K.-H.: The microscopic foundations of Vlasov theory for jellium-like Newtonian N-body systems. J. Stat. Phys., 155(6), 1299–1328 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Lazarovici, D.: The Vlasov-Poisson dynamics as the mean field limit of extended charges. Commun. Math. Phys. 347, 271–289, 2016

  12. Lions P.-L., Perthame B.: Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. Invent. Math., 105, 415–430 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Loeper G.: Uniqueness of the solution to the Vlasov-Poisson system with bounded density. J. Math. Pures Appl., 86, 68–79 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Neunzert, H.: An introduction to the nonlinear Boltzmann-Vlasov equation. In C. Cercignani, editor, Kinetic Theories and the Boltzmann Equation, volume 1048 of Lecture Notes in Mathematics, pp. 60–110. Springer, Berlin, Heidelberg, 1984

  15. Neunzert, H., Wick, J.: Die Approximation der Lösung von Integro-Differentialgleichungen durch endliche Punktmengen. In R. Ansorge and W. Törnig, editors, Numerische Behandlung nichtlinearer Integrodifferential - und Differentialgleichungen, volume 395 of Lecture Notes in Mathematics, pp 275–290. Springer, Berlin, Heidelberg, 1974

  16. Pfaffelmoser K.: Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data. J. Differ. Equ., 95(2), 281–303 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Schaeffer J.: Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions. Commun. Part. Differ. Equ., 16(8-9), 1313–1335 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Spohn H.: Dynamics of Charged Particles and their Radiation Field. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  19. Sznitman, A.-S.: Topics in propagation of chaos. In École d’Été de Probabilités de Saint-Flour XIX—1989, volume 1464 of Lecture Notes in Mathematics, pp. 165–251. Springer, Berlin, 1991

  20. Villani, C.: Optimal Transport Old and New, volume 338 of Grundlehren der mathematischen Wissenschaften. Springer, Berlin 2009

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dustin Lazarovici.

Additional information

Communicated by P.-L. Lions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarovici, D., Pickl, P. A Mean Field Limit for the Vlasov–Poisson System. Arch Rational Mech Anal 225, 1201–1231 (2017). https://doi.org/10.1007/s00205-017-1125-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1125-0

Navigation