Skip to main content
Log in

A Temperature-Dependent Phase-Field Model for Phase Separation and Damage

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper we study a model for phase separation and damage in thermoviscoelastic materials. The main novelty of the paper consists in the fact that, in contrast with previous works in the literature concerning phase separation and damage processes in elastic media, in our model we encompass thermal processes, nonlinearly coupled with the damage, concentration and displacement evolutions. More particularly, we prove the existence of “entropic weak solutions”, resorting to a solvability concept first introduced in Feireisl (Comput Math Appl 53:461–490, 2007) in the framework of Fourier–Navier–Stokes systems and then recently employed in Feireisl et al. (Math Methods Appl Sci 32:1345–1369, 2009) and Rocca and Rossi (Math Models Methods Appl Sci 24:1265–1341, 2014) for the study of PDE systems for phase transition and damage. Our global-in-time existence result is obtained by passing to the limit in a carefully devised time-discretization scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babadjian J.-F.: A quasistatic evolution model for the interaction between fracture and damage. Arch. Ration. Mech. Anal. 200, 945–1002 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babadjian J.-F., Millot V.: Unilateral gradient flow of the Ambrosio–Tortorelli functional by minimizing movements. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 31, 779–822 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bonetti E., Schimperna G., Segatti A.: On a doubly nonlinear model for the evolution of damaging in viscoelastic materials. J. Differ. Equ. 218, 91–116 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bonetti E., Bonfanti G.: Well-posedness results for a model of damage in thermoviscoelastic materials. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 25, 1187–1208 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bouchitté G., Mielke A., Roubícek T.: A complete-damage problem at small strains. Z. Angew. Math. Phys. 60, 205–236 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cahn J.W., Hilliard J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys 28, 258–267 (1958)

    Article  ADS  Google Scholar 

  7. Eleuteri M., Rocca E., Schimperna G.: On a non-isothermal diffuse interface model for two-phase flows of incompressible fluids. Discrete Contin. Dyn. Syst. 35, 2497–2522 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Feireisl E., Petzeltová H., Rocca E.: Existence of solutions to a phase transition model with microscopic movements. Math. Methods Appl. Sci. 32, 1345–1369 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Feireisl E.: Mathematical theory of compressible, viscous, and heat conducting fluids. Comput. Math. Appl. 53, 461–490 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feireisl E., Frémond M., Rocca E., Schimperna G.: A new approach to non-isothermal models for nematic liquid crystals. Arch. Ration. Mech. Anal. 205, 651–672 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feireisl E., Rocca E., Schimperna G., Zarnescu A.: Evolution of non-isothermal Landau-de Gennes nematic liquid crystals flows with singular potential. Commun. Math. Sci. 12, 317–343 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feireisl E., Rocca E., Schimperna G., Zarnescu A.: Nonisothermal nematic liquid crystal flows with the Ball-Majumdar free energy. Ann. Mat. Pura Appl. 194, 1269–1299 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fiaschi A., Knees D., Stefanelli U.: Young-Measure Quasi-Static Damage Evolution. Arch. Ration. Mech. Anal. 203, 415–453 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frémond M.: Non-smooth Thermomechanics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  15. Francfort G.A., Garroni A.: A variational view of partial brittle damage evolution. Arch. Ration. Mech. Anal. 182, 125–152 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Garroni A., Larsen C.: Threshold-based quasi-static brittle damage evolution. Arch. Ration. Mech. Anal. 194, 585–609 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gilardi G., Miranville A., Schimperna G.: On the Cahn–Hilliard equation with irregular potentials and dynamic boundary conditions. Commun. Pure Appl. Anal. 8, 881–912 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grasselli M., Miranville A., Rossi R., Schimperna G.: Analysis of the Cahn-Hilliard equation with a chemical potential dependent mobility. Commun. Partial Differ. Equ. 36, 1193–1238 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gurtin M.E.: Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Phys. D 92, 178–192 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Heinemann C., Kraus C.: Existence results of weak solutions for Cahn–Hilliard systems coupled with elasticity and damage. Adv. Math. Sci. Appl. 21, 321–359 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Heinemann C., Kraus C.: Existence results for diffuse interface models describing phase separation and damage. Eur. J. Appl. Math. 24, 179–211 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Heinemann C., Kraus C.: A degenerating Cahn–Hilliard system coupled with complete damage processes. Nonlinear Anal., Real World Appl. 22, 388–403 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Heinemann C., Rocca E.: Damage processes in thermoviscoelastic materials with damage-dependent thermal expansion coefficients. Math. Methods Appl. Sci. 38, 4587–4612 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Klein R.: Laser Welding of Plastics. Wiley, Berlin (2012)

    Google Scholar 

  25. Knees D., Rossi R., Zanini C.: A vanishing viscosity approach to a rate-independent damage model. Math. Models Methods Appl. Sci. 23, 565–616 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Knees D., Rossi R., Zanini C.: A quasilinear differential inclusion for viscous and rate-independent damage systems in non-smooth domains. Nonlinear Anal. Real World Appl. 24, 126–162 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Luckhaus S., Modica L.: The Gibbs–Thompson relation within the gradient theory of phase transitions. Arch. Ration. Mech. Anal. 107, 71–83 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. Marsden J.E., Hughes T.J.R.: Mathematical foundations of elasticity. Dover Publications, Inc., New York (1994)

    MATH  Google Scholar 

  29. Lions J.-L., Magenes E.: Non-homogeneous Boundary Value Problems and Applications, vol. I. Springer, New York (1972)

    Book  MATH  Google Scholar 

  30. Mielke A., Roubícek T.: Rate-independent damage processes in nonlinear elasticity. Math. Models Methods Appl. Sci. 16, 177–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mielke A., Roubícek T., Zeman J.: Complete damage in elastic and viscoelastic media and its energetics. Comput. Methods Appl. Mech. Eng. 199, 1242–1253 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Modica L.: The Gradient Theory of Phase Transitions and the Minimal Interface Criterion. Arch. Ration. Mech. Anal. 98, 123–142 (1986)

    MathSciNet  MATH  Google Scholar 

  33. Necas J.: Les méthodes directes en théorie des équations elliptiques. Masson et Cie Éditeurs, Paris (1967)

    MATH  Google Scholar 

  34. Rocca E., Rossi R.: A degenerating PDE system for phase transitions and damage. Math. Models Methods Appl. Sci. 24, 1265–1341 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rocca E., Rossi R.: “Entropic” solutions to a thermodynamically consistent PDE system for phase transitions and damage. SIAM J. Math. Anal. 47, 2519–2586 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Roubícek T.: Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel (2005)

    MATH  Google Scholar 

  37. Roubícek T.: Thermodynamics of rate-independent processes in viscous solids at small strains. SIAM J. Math. Anal. 40, 256–297 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Savaré G.: Regularity results for elliptic equations in Lipschitz domains. J. Funct. Anal. 152, 176–201 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Simon J.: Compact sets in the space \({L^p(0, T; B)}\) . Ann. Mat. Pura Appl. 146, 65–96 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  40. Roubícek T., Tomassetti G.: Thermomechanics of damageable materials under diffusion: modeling and analysis. Z. Angew. Math. Phys. 66, 3535–3572 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zeld́ovich J.B., Raizer Y.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Academic Press, New York (1966)

    Google Scholar 

  42. Zimmer J.: Global existence for a nonlinear system in thermoviscoelasticity with nonconvex energy. J. Math. Anal. Appl. 292, 589–604 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Heinemann.

Additional information

Communicated by G. Dal Maso

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heinemann, C., Kraus, C., Rocca, E. et al. A Temperature-Dependent Phase-Field Model for Phase Separation and Damage. Arch Rational Mech Anal 225, 177–247 (2017). https://doi.org/10.1007/s00205-017-1102-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1102-7

Navigation