Skip to main content
Log in

Mammalian toxicity of trifluoroacetate and assessment of human health risks due to environmental exposures

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

While trifluoroacetic acid has limited technical uses, the highly water-soluble trifluoroacetate (TFA) is reported to be present in water bodies at low concentrations. Most of the TFA in the environment is discussed to arise from natural processes, but also with the contribution from decomposition of environmental chemicals. The presence of TFA may result in human exposures. For hazard and risk assessment, the mammalian toxicity of TFA and human exposures are reviewed to assess the margin of exposures (MoE). The potential of TFA to induce acute toxicity is very low and oral repeated dose studies in rats have identified the liver as the target organ with mild liver hypertrophy as the lead effect. Biomarker analyses indicate that TFA is a weak peroxisome proliferator in rats. TFA administered to rats did not induce adverse effects in an extended one-generation study and in a developmental toxicity study or induce genotoxic responses. Based on recent levels of TFA in water and diet, MoEs for human exposures to TFA are well above 100 and do not indicate health risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The datasets analysed during the current study are available in the cited references/web sites.

References

  • Ball JC, Wellington TJ (1993) Formation of trifluoroacetic acid from the atmospheric degradation of hydrofluorocarbon 134a: a human health concern? Air Waste 43:1260–1262

    Article  CAS  PubMed  Google Scholar 

  • Bayer C (2014) Summary of toxicological and metabolism studies for flurtamone. https://www.bayer.com/sites/default/files/M-482307-01-5.PDF

  • Bayer T, Amberg A, Bertermann R, Rusch GM, Anders MW, Dekant W (2002) Biotransformation of 1,1,1,3,3-Pentafluoropropane (HFC-245fa). Chem Res Toxicol 15:723–733

    Article  CAS  PubMed  Google Scholar 

  • Behringer D, Heydel F, Gschrey B, Osterheld S, Schwarz W, Warncke K, Freeling F, Nödler K, Henne S, Reimann S, Blepp M, Jörß W, Liu R, Ludig S, Rüdenauer, I Gartiser S (2021) Persistent degradation products of halogenated refrigerants and blowing agents in the environment: type, environmental concentrations, and fate with particular regard to new halogenated substitutes with low global warming potential. Umweltbundesamt. https://www.umweltbundesamt.de/sites/default/files/medien/5750/publikationen/2021-05-06_texte_73-2021_persistent_degradation_products.pdf

  • Boutonnet JC, Bingham P, Calamari D, Rooij Cd, Franklin J, Kawano T, Libre J-M, McCul-loch A, Malinverno G, Odom JM, Rusch GM, Smythe K, Sobolev I, Thompson R, Tiedje JM (1999) Environmental risk assessment of trifluoroacetic acid. Hum Ecol Risk Assess Int J 5:59–124

    Article  CAS  Google Scholar 

  • Cahill TM (2022) Increases in trifluoroacetate concentrations in surface waters over two decades. Environ Sci Technol 56:9428–9434

    Article  CAS  PubMed  Google Scholar 

  • Colnot T, Dekant W (2017) Approaches for grouping of pesticides into cumulative assessment groups for risk assessment of pesticide residues in food. Regul Toxicol Pharmacol 83:89–99

    Article  CAS  PubMed  Google Scholar 

  • David LM, Barth M, Höglund-Isaksson L, Purohit P, Velders GJM, Glaser S, Ravishankara AR (2021) Trifluoroacetic acid deposition from emissions of HFO-1234yf in India, China, and the Middle East. Atmos Chem Phys 21:14833–14849

    Article  CAS  Google Scholar 

  • Dieter HH, Grohmann A, Thompson D (1997) Specific contributions of politics, economics, and toxicology in setting socially consensual limit values. Environ Manag 21:505–515

    Article  CAS  Google Scholar 

  • Dorgerloh U, Becker R, Kaiser M (2019) Evidence for the formation of difluoroacetic acid in chlorofluorocarbon-contaminated ground water. Molecules 24:1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ECHA (2022) https://echa.europa.eu/de/registration-dossier/-/registered-dossier/5203/7/1 European Chemical Agency: Registration dossier for trifluoroacetic acid EC number: 200-929-3; CAS number: 76-05-1 (first published 03-Mar-2011, last modified 10-Oct-2022, accessed 02-Nov-2022)

  • EFSA (2014) European food safety, authority: reasoned opinion on the setting of MRLs for saflufenacil in various crops, considering the risk related to the metabolite trifluoroacetic acid (TFA). EFSA J 12:3585

    Google Scholar 

  • Ellis DA, Hanson ML, Sibley PK, Shahid T, Fineberg NA, Solomon KR, Muir DCG, Mabury SA (2001) The fate and persistence of trifluoroacetic and chloroacetic acids in pond waters. Chemosphere 42:309–318

    Article  CAS  PubMed  Google Scholar 

  • Felter SP, Foreman JE, Boobis A, Corton JC, Doi AM, Flowers L, Goodman J, Haber LT, Jacobs A, Klaunig JE, Lynch AM, Moggs J, Pandiri A (2018) Human relevance of rodent liver tumors: key insights from a Toxicology Forum workshop on nongenotoxic modes of action. Regul Toxicol Pharmacol 92:1–7

    Article  PubMed  Google Scholar 

  • Frank H, Klein A, Renschen D (1996) Environmental trifluoroacetate. Nature 382:34–34

    Article  CAS  Google Scholar 

  • Frank H, Christoph EH, Holm-Hansen O, Bullister JL (2002) Trifluoroacetate in ocean waters. Environ Sci Technol 36:12–15

    Article  CAS  PubMed  Google Scholar 

  • Hall AP, Elcombe CR, Foster JR, Harada T, Kaufmann W, Knippel A, Küttler K, Malarkey DE, Maronpot RR, Nishikawa A, Nolte T, Schulte A, Strauss V, York MJ (2012) Liver hypertrophy: a review of adaptive (adverse and non-adverse) changes—conclusions from the 3rd International ESTP Expert Workshop. Toxicol Pathol 40:971–994

    Article  CAS  PubMed  Google Scholar 

  • Inoue M, Sumii Y, Shibata N (2020) Contribution of organofluorine compounds to pharmaceuticals. ACS Omega 5:10633–10640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson BM, Shu YZ, Zhuo X, Meanwell NA (2020) Metabolic and pharmaceutical aspects of fluorinated compounds. J Med Chem 63:6315–6386

    Article  CAS  PubMed  Google Scholar 

  • Jordan A, Frank H (1999) Trifluoroacetate in the environment. Evidence for sources other than HFC/HCFCs. Environ Sci Technol 33:522–527

    Article  CAS  Google Scholar 

  • Joudan S, De Silva AO, Young CJ (2021) Insufficient evidence for the existence of natural trifluoroacetic acid. Environ Sci Process Impacts 23:1641–1649

    Article  CAS  PubMed  Google Scholar 

  • Lan Z, Yao Y, Xu J, Chen H, Ren C, Fang X, Zhang K, Jin L, Hua X, Alder AC, Wu F, Sun H (2020) Novel and legacy per- and polyfluoroalkyl substances (PFASs) in a farmland environment: soil distribution and biomonitoring with plant leaves and locusts. Environ Pollut 263:114487

    Article  CAS  PubMed  Google Scholar 

  • Sacher F, Lange F, Nödler K, Scheurer M, Müller J, Nürenberg G (2019) Optimierung der EOF-Analytik unter Berücksichtigung der Beiträge verschiedener Stoffklassen poly-und perfluorierter Verbindungen. Forschungsbericht BWPLUS, Förderkennzeichen: L7517011-16

  • Scheurer M, Nodler K (2021) Ultrashort-chain perfluoroalkyl substance trifluoroacetate (TFA) in beer and tea—an unintended aqueous extraction. Food Chem 351:129304

    Article  CAS  PubMed  Google Scholar 

  • Scheurer M, Nodler K, Freeling F, Janda J, Happel O, Riegel M, Muller U, Storck FR, Fleig M, Lange FT, Brunsch A, Brauch HJ (2017) Small, mobile, persistent: trifluoroacetate in the water cycle—overlooked sources, pathways, and consequences for drinking water supply. Water Res 126:460–471

    Article  CAS  PubMed  Google Scholar 

  • Scott BF, Macdonald RW, Kannan K, Fisk A, Witter A, Yamashita N, Durham L, Spencer C, Muir DC (2005) Trifluoroacetate profiles in the Arctic, Atlantic, and Pacific Oceans. Environ Sci Technol 39:6555–6560

    Article  CAS  PubMed  Google Scholar 

  • Solomon KR, Velders GJ, Wilson SR, Madronich S, Longstreth J, Aucamp PJ, Bornman JF (2016) Sources, fates, toxicity, and risks of trifluoroacetic acid and its salts: relevance to substances regulated under the Montreal and Kyoto Protocols (Report Number 2016–01, prepared by the UNEP Environmental Effects Assessment Panel). J Toxicol Environ Health B Crit Rev 19:289–304

    Article  CAS  PubMed  Google Scholar 

  • Sutton TS, Koblin DD, Gruenke LD, Weiskopf RB, Rampil IJ, Waskell L, Eger EI 2nd (1991) Fluoride metabolites after prolonged exposure of volunteers and patients to desflurane. Anesth Analg 73:180–185

    Article  CAS  PubMed  Google Scholar 

  • UBA (2020) Umweltbundesamt. Trifluoressigsäure (TFA) - Gewässerschutz im Spannungsfeld von toxikologischem Leitwert, Trinkwasserhygiene und Eintragsminimierung. Erläuterungen zur Einordnung des neuen Trinkwasserleitwerts von 60 μg/L. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/362/dokumente/2020_10_20_uba_einordnung_tfa_leitwert.pdf

  • UBA (2021a) Umweltbundesamt. Reducing the input of chemicals into waters: trifluoroacetate (TFA) as a persistent and mobile substance with many sources. Sources, input pathways, environmental contamination of TFA and regulatory approaches. https://www.umweltbundesamt.de/sites/default/files/medien/479/publikationen/hgp_reducing_the_input_of_chemicals_into_waters.pdf

  • UBA (2021b) Umweltbundesamt. Persistent degradation products of halogenated refrigerants and blowing agents in the environment: Type, environmental concentrations, and fate with particular regard to new halogenated substitutes with low global warming potential. Vol. FB000452/ENG. Umwelt Bundesamt, Dessau-Roßlau

  • Urban G, Dekant W (1994) Metabolism of 1,1-dichloro-2,2,2-trifluoroethane in rats. Xenobiotica 24:881–892

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chen M, Gong P, Wang C (2019) Perfluorinated alkyl substances in snow as an atmospheric tracer for tracking the interactions between westerly winds and the Indian Monsoon over western China. Environ Int 124:294–301

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Yao Y, Chen H, Chang S, Tian Y, Sun H (2020) Per- and polyfluoroalkyl substances and the contribution of unknown precursors and short-chain (C2–C3) perfluoroalkyl carboxylic acids at solid waste disposal facilities. Sci Total Environ 705:135832

    Article  CAS  PubMed  Google Scholar 

  • Wark H, Earl J, Chau DD, Overton J (1990) Halothane metabolism in children. Br J Anaesth 64:474–481

    Article  CAS  PubMed  Google Scholar 

  • Wark H, Earl J, Chau D, Overton J (1991) Biliary excretion of the halothane metabolite trifluoroacetic acid in infants. Anaesth Intensive Care 19:213–216

    Article  CAS  PubMed  Google Scholar 

  • Xie G, Cui J, Zhai Z, Zhang J (2020) Distribution characteristics of trifluoroacetic acid in the environments surrounding fluorochemical production plants in Jinan, China. Environ Sci Pollut Res Int 27:983–991

    Article  CAS  PubMed  Google Scholar 

  • Zehavi D, Seiber JN (1996) An analytical method for trifluoroacetic acid in water and air samples using headspace gas chromatographic determination of the methyl ester. Anal Chem 68:3450–3459

    Article  CAS  PubMed  Google Scholar 

  • Zhai Z, Wu J, Hu X, Li L, Guo J, Zhang B, Hu J, Zhang J (2015) A 17-fold increase of trifluoroacetic acid in landscape waters of Beijing, China during the last decade. Chemosphere 129:110–117

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Preparation of this review was supported by Honeywell. The support was provided to Prof. Dr. Wolfgang Dekant, a retired Professor of Toxicology at the Department of Pharmacology and Toxicology of the University of Würzburg.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, WD; writing—original draft preparation, RD, WD; writing—review and editing: RD, WD; All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Wolfgang Dekant.

Ethics declarations

Conflict of interest

The authors certify that their freedom to design, conduct, interpret, and publish research was not compromised by the sponsor. The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Wolfgang Dekant: Retired.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dekant, W., Dekant, R. Mammalian toxicity of trifluoroacetate and assessment of human health risks due to environmental exposures. Arch Toxicol 97, 1069–1077 (2023). https://doi.org/10.1007/s00204-023-03454-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-023-03454-y

Keywords

Navigation