Skip to main content

Advertisement

Log in

Cell–cell contacts protect against t-BuOOH-induced cellular damage and ferroptosis in vitro

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Ferroptosis is a recently discovered pathway of regulated necrosis dependent on iron and lipid peroxidation. It has gained broad attention since it is a promising approach to overcome resistance to apoptosis in cancer chemotherapy. We have recently identified tertiary-butyl hydroperoxide (t-BuOOH) as a novel inducer of ferroptosis. t-BuOOH is a widely used compound to induce oxidative stress in vitro. t-BuOOH induces lipid peroxidation and consequently ferroptosis in murine and human cell lines. t-BuOOH additionally results in a loss of mitochondrial membrane potential, formation of DNA double-strand breaks, and replication block. Here, we specifically address the question whether cell–cell contacts regulate t-BuOOH-induced ferroptosis and cellular damage. To this end, murine NIH3T3 or human HaCaT cells were seeded to confluence, but below their saturation density to allow the establishment of cell–cell contacts without inducing quiescence. Cells were then treated with t-BuOOH (50 or 200 µM, respectively). We revealed that cell–cell contacts reduce basal and t-BuOOH-triggered lipid peroxidation and consequently block ferroptosis. Similar results were obtained with the specific ferroptosis inducer erastin. Cell–cell contacts further protect against t-BuOOH-induced loss of mitochondrial membrane potential, and formation of DNA double-strand breaks. Interestingly, cell–cell contacts failed to prevent t-BuOOH-mediated replication block or formation of the oxidative base lesion 8-oxo-dG. Since evidence of protection against cell death was both (i) observed after treatment with hydrogen peroxide, methyl methanesulfonate or UV-C, and (ii) seen in several cell lines, we conclude that protection by cell–cell contacts is a widespread phenomenon. The impact of cell–cell contacts on toxicity might have important implications in cancer chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Acknowledgements

We thank Bernd Epe for fruitful discussions. We are indebted to Anna Frumkina for expert technical assistance. The technical support by Julia Altmaier, FACS and Array Core Facility, is gratefully acknowledged. The work was supported by the Stipendienstiftung Rheinland-Pfalz, Hoffmann-Klose-Stiftung, Johannes Gutenberg-University, and University Medical Center of the Johannes Gutenberg-University and is part of the Ph.D. thesis of CW, and the MD theses of BL, and CT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Dietrich.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 14395 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wenz, C., Faust, D., Linz, B. et al. Cell–cell contacts protect against t-BuOOH-induced cellular damage and ferroptosis in vitro. Arch Toxicol 93, 1265–1279 (2019). https://doi.org/10.1007/s00204-019-02413-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-019-02413-w

Keywords

Navigation