Skip to main content
Log in

Comparative hepatotoxicity of 6:2 fluorotelomer carboxylic acid and 6:2 fluorotelomer sulfonic acid, two fluorinated alternatives to long-chain perfluoroalkyl acids, on adult male mice

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Due to their structural similarities, 6:2 fluorotelomer sulfonic acid (6:2 FTSA) and 6:2 fluorotelomer carboxylic acid (6:2 FTCA) are often used as alternatives to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), respectively. With limited health risk data and 6:2 FTSA detection in water and sludge, the toxicity of these chemicals is of growing concern. Here, adult male mice were exposed with 5 mg/kg/day of 6:2 FTCA or 6:2 FTSA for 28 days to investigate their hepatotoxicological effects. In contrast to 6:2 FTCA, 6:2 FTSA was detected at high and very high levels in serum and liver, respectively, demonstrating bioaccumulation potential and slow elimination. Furthermore, 6:2 FTSA induced liver weight increase, inflammation, and necrosis, whereas 6:2 FTCA caused no obvious liver injury, with fewer significantly altered genes detected compared with that of 6:2 FTSA (39 vs. 412). Although PFOA and PFOS commonly activate peroxisome proliferator-activated receptor α (PPARα), 6:2 FTSA induced an increase in PPARγ and related proteins, but not in lipid metabolism-related genes such as PPARα. Our results showed that 6:2 FTCA and 6:2 FTSA exhibited weak and moderate hepatotoxicity, respectively, compared with that reported for legacies PFOA and PFOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott BD, Wood CR, Watkins AM, Tatum-Gibbs K, Das KP, Lau C (2012) Effects of perfluorooctanoic acid (PFOA) on expression of peroxisome proliferator-activated receptors (PPAR) and nuclear receptor-regulated genes in fetal and postnatal CD-1 mouse tissues. Reprod Toxicol 33(4):491–505

    Article  CAS  PubMed  Google Scholar 

  • Arocho A, Chen BY, Ladanyi M, Pan QL (2006) Validation of the 2(-Delta Delta Ct) calculation as an alternate method of data analysis for quantitative PCR of BCR-ABL P210 transcripts. Diagn Mol Pathol 15(1):56–61

    Article  CAS  PubMed  Google Scholar 

  • Belfiore A, Genua M, Malaguarnera R (2009) PPAR-gamma agonists and their effects on IGF-I receptor signaling: implications for cancer. PPAR Res. doi:10.1155/2009/830501

    PubMed  PubMed Central  Google Scholar 

  • Bilzer M, Roggel F, Gerbes AL (2006) Role of Kupffer cells in host defense and liver disease. Liver Int 26(10):1175–1186

    Article  CAS  PubMed  Google Scholar 

  • Buck RC, Franklin J, Berger U et al (2011) Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag 7(4):513–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang SC, Noker PE, Gorman GS et al (2012) Comparative pharmacokinetics of perfluorooctanesulfonate (PFOS) in rats, mice, and monkeys. Reprod Toxicol 33(4):428–440

    Article  CAS  PubMed  Google Scholar 

  • Chinetti G, Fruchart JC, Staels B (2000) Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res 49(10):497–505

    Article  CAS  PubMed  Google Scholar 

  • Covaci A, Harrad S, Abdallah MAE et al (2011) Novel brominated flame retardants: a review of their analysis, environmental fate and behaviour. Environ Int 37(2):532–556

    Article  CAS  PubMed  Google Scholar 

  • Dinarello CA (2000) Proinflammatory cytokines. Chest 118(2):503–508

    Article  CAS  PubMed  Google Scholar 

  • El-Sheikh AA, Rifaai RA (2014) Peroxisome proliferator activator receptor (PPAR)-gamma ligand, but not PPAR-alpha, ameliorates cyclophosphamide-induced oxidative stress and inflammation in rat liver. PPAR Res 2014:626319. doi:10.1155/2014/626319

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang X, Zou S, Zhao Y et al (2012) Kupffer cells suppress perfluorononanoic acid-induced hepatic peroxisome proliferator-activated receptor alpha expression by releasing cytokines. Arch Toxicol 86(10):1515–1525

    Article  CAS  PubMed  Google Scholar 

  • Fang S, Zhang Y, Zhao S, Qiang L, Chen M, Zhu L (2016) Bioaccumulation of perfluoroalkyl acids including the isomers of perfluorooctane sulfonate in carp (Cyprinus carpio) in a sediment/water microcosm. Environ Toxicol Chem. doi:10.1002/etc.3483

    Google Scholar 

  • Gallo V, Leonardi G, Genser B et al (2012) Serum perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) concentrations and liver function biomarkers in a population with elevated PFOA exposure. Environ Health Perspect 120(5):655–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajri T, Han XX, Bonen A, Abumrad NA (2002) Defective fatty acid uptake modulates insulin responsiveness and metabolic responses to diet in CD36-null mice. J Clin Invest 109(10):1381–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall AP, Elcombe CR, Foster JR et al (2012) Liver hypertrophy: a review of adaptive (adverse and non-adverse) changes-conclusions from the 3rd international ESTP expert workshop. Toxicol Pathol 40(7):971–994

    Article  CAS  PubMed  Google Scholar 

  • Hansen KJ, Clemen LA, Ellefson ME, Johnson HO (2001) Compound-specific, quantitative characterization of organic: fluorochemicals in biological matrices. Environ Sci Technol 35(4):766–770

    Article  CAS  PubMed  Google Scholar 

  • Heimburger M, Palmblad J (1998) The peroxisome proliferator-activated receptor alpha (PPAR alpha) ligand WY 14,643 does not interfere with leukotriene B4 induced adhesion of neutrophils to endothelial cells. Biochem Biophys Res Commun 249(2):371–374

    Article  CAS  PubMed  Google Scholar 

  • Hoke RA, Ferrell BD, Ryan T et al (2015) Aquatic hazard, bioaccumulation and screening risk assessment for 6:2 fluorotelomer sulfonate. Chemosphere 128:258–265

    Article  CAS  PubMed  Google Scholar 

  • Huang QY, Zhang J, Martin FL et al (2013) Perfluorooctanoic acid induces apoptosis through the p53-dependent mitochondrial pathway in human hepatic cells: a proteomic study. Toxicol Lett 223(2):211–220

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Yue S, Ke BB et al (2014) Nuclear factor erythroid 2-related factor 2 regulates toll-like receptor 4 innate responses in mouse liver ischemia-reperfusion injury through Akt-forkhead box orotein O1 signaling network. Transplantation 98(7):721–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Yang Y, Li WX et al (2015) Hyperin attenuates inflammation by activating PPAR-gamma in mice with acute liver injury (ALI) and LPS-induced RAW264.7 cells. Int Immunopharmacol 29(2):440–447

    Article  CAS  PubMed  Google Scholar 

  • Iwai H (2011) Toxicokinetics of ammonium perfluorohexanoate. Drug Chem Toxicol 34(4):341–346

    Article  CAS  PubMed  Google Scholar 

  • Kannan K (2011) Perfluoroalkyl and polyfluoroalkyl substances: current and future perspectives. Environ Chem 8(4):333–338

    Article  CAS  Google Scholar 

  • Kohler UA, Bohm F, Rolfs F et al (2016) NF-kappa B/RelA and Nrf2 cooperate to maintain hepatocyte integrity and to prevent development of hepatocellular adenoma. J Hepatol 64(1):94–102

    Article  CAS  PubMed  Google Scholar 

  • Lau C (2012) Perfluorinated compounds. EXS 101:47–86

    PubMed  Google Scholar 

  • Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J (2007) Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci 99(2):366–394

    Article  CAS  PubMed  Google Scholar 

  • Lazo M, Selvin E, Clark JM (2008) Brief communication: clinical implications of short-term variability in liver function test results. Ann Int Med 148(5):348-W76

    Article  Google Scholar 

  • Lin YF, Liu RZ, Hu FB, Liu RR, Ruan T, Jiang GB (2016) Simultaneous qualitative and quantitative analysis of fluoroalkyl sulfonates in riverine water by liquid chromatography coupled with Orbitrap high resolution mass spectrometry. J Chromatogr A 1435:66–74

    Article  CAS  PubMed  Google Scholar 

  • Liu FC, Tsai YF, Yu HP (2013) Maraviroc attenuates trauma-hemorrhage-induced hepatic injury through PPAR gamma-dependent pathway in rats. PLoS ONE. doi:10.1371/journal.pone.0078861

    Google Scholar 

  • Park S, Lee LS, Medina VF, Zull A, Waisner S (2016) Heat-activated persulfate oxidation of PFOA, 6:2 fluorotelomer sulfonate, and PFOS under conditions suitable for in situ groundwater remediation. Chemosphere 145:376–383

    Article  CAS  PubMed  Google Scholar 

  • Pascual G, Fong AL, Ogawa S et al (2005) A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 437(7059):759–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pravenec M, Landa V, Zidek V et al (2003) Transgenic expression of CD36 in the spontaneously hypertensive rat is associated with amelioration of metabolic disturbances but has no effect on hypertension. Physiol Res 52(6):681–688

    CAS  PubMed  Google Scholar 

  • Qazi MR, Abedi MR, Nelson BD, DePierre JW, Abedi-Valugerdi M (2010) Dietary exposure to perfluorooctanoate or perfluorooctane sulfonate induces hypertrophy in centrilobular hepatocytes and alters the hepatic immune status in mice. Int Immunopharmacol 10(11):1420–1427

    Article  CAS  PubMed  Google Scholar 

  • Qazi MR, Hassan M, Nelson BD, DePierre JW, Abedi-Valugerdi M (2013) Sub-acute, moderate-dose, but not short-term, low-dose dietary pre-exposure of mice to perfluorooctanoate aggravates concanavalin A-induced hepatitis. Toxicol Lett 219(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Quist EM, Filgo AJ, Cummings CA, Kissling GE, Hoenerhoff MJ, Fenton SE (2015) Hepatic mitochondrial alteration in CD-1 mice associated with prenatal exposures to low doses of perfluorooctanoic acid (PFOA). Toxicol Pathol 43(4):546–557

    Article  CAS  PubMed  Google Scholar 

  • Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28(1):56–63

    Article  CAS  PubMed  Google Scholar 

  • Ritter SK (2010) Fluorochemicals Go Short. Chem Eng News 88(5):12–17

    Article  Google Scholar 

  • Ruan T, Lin YF, Wang T, Liu RZ, Jiang GB (2015) Identification of novel polyfluorinated ether sulfonates as PFOS alternatives in municipal sewage sludge in China. Environ Sci Technol 49(11):6519–6527

    Article  CAS  PubMed  Google Scholar 

  • Scirpo R, Fiorotto R, Villani A, Amenduni M, Spirli C, Strazzabosco M (2015) Stimulation of nuclear receptor peroxisome proliferator-activated receptor-gamma limits NF-kappa B-dependent inflammation in mouse cystic fibrosis biliary epithelium. Hepatology 62(5):1551–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stienstra R, Duval C, Muller M, Kersten S (2007) PPARs, obesity, and inflammation. PPAR Res. doi:10.1155/2007/95974

    PubMed Central  Google Scholar 

  • Strempel S, Scheringer M, Ng CA, Hungerbuhler K (2012) Screening for PBT chemicals among the “existing” and “new” chemicals of the EU. Environ Sci Technol 46(11):5680–5687

    Article  CAS  PubMed  Google Scholar 

  • Ulhaq M, Sundstrom M, Larsson P et al (2015) Tissue uptake, distribution and elimination of 14C-PFOA in zebrafish (Danio rerio). Aquat Toxicol 163:148–157

    Article  CAS  PubMed  Google Scholar 

  • Vanden Heuvel JP, Kuslikis BI, Van Rafelghem MJ, Peterson RE (1991) Tissue distribution, metabolism, and elimination of perfluorooctanoic acid in male and female rats. J Biochem Toxicol 6(2):83–92

    Article  CAS  PubMed  Google Scholar 

  • Vanden Heuvel JP, Thompson JT, Frame SR, Gillies PJ (2006) Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: a comparison of human, mouse, and rat peroxisome proliferator-activated receptor-alpha, -beta, and -gamma, liver X receptor-beta, and retinoid X receptor-alpha. Toxicol Sci 92(2):476–489

    Article  CAS  PubMed  Google Scholar 

  • Wan C, Han R, Liu L et al (2016) Role of miR-155 in fluorooctane sulfonate-induced oxidative hepatic damage via the Nrf2-dependent pathway. Toxicol Appl Pharmacol 295:85–93

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Cousins IT, Scheringer M, Hungerbuhler K (2013) Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors. Environ Int 60:242–248

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang Y, Liang Y et al (2014) PFOS induced lipid metabolism disturbances in BALB/c mice through inhibition of low density lipoproteins excretion. Sci Rep 4:4582. doi:10.1038/srep04582

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Cousins IT, Scheringer M, Hungerbuehler K (2015) Hazard assessment of fluorinated alternatives to long-chain perfluoroalkyl acids (PFAAs) and their precursors: status quo, ongoing challenges and possible solutions. Environ Int 75:172–179

    Article  CAS  PubMed  Google Scholar 

  • Willach S, Brauch HJ, Lange FT (2016) Contribution of selected perfluoroalkyl and polyfluoroalkyl substances to the adsorbable organically bound fluorine in German rivers and in a highly contaminated groundwater. Chemosphere 145:342–350

    Article  CAS  PubMed  Google Scholar 

  • Xing J, Wang G, Zhao J et al (2016) Toxicity assessment of perfluorooctane sulfonate using acute and subchronic male C57BL/6J mouse models. Environ Pollut 210:388–396

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Zhao M, Li H, Lu W, Su X, Han Z (2011) Anovelfluorocarbon surfactant: synthesis and application in emulsion polymerization of perfluoroalkyl methacrylates. Paint Coat Ind 41:17–21

    Google Scholar 

  • Yan SM, Wang JS, Zhang W, Dai JY (2014) Circulating microRNA profiles altered in mice after 28 d exposure to perfluorooctanoic acid. Toxicol Lett 224(1):24–31

    Article  CAS  PubMed  Google Scholar 

  • Yan SM, Wang JS, Dai JY (2015) Activation of sterol regulatory element-binding proteins in mice exposed to perfluorooctanoic acid for 28 days. Arch Toxicol 89(9):1569–1578

    Article  CAS  PubMed  Google Scholar 

  • Yang XL, Huang J, Zhang KL, Yu G, Deng SB, Wang B (2014) Stability of 6:2 fluorotelomer sulfonate in advanced oxidation processes: degradation kinetics and pathway. Environ Sci Pollut R 21(6):4634–4642

    Article  CAS  Google Scholar 

  • Zhang Y, Jiang W, Fang S, Zhu L, Deng J (2014) Perfluoroalkyl acids and the isomers of perfluorooctanesulfonate and perfluorooctanoate in the sera of 50 new couples in Tianjin, China. Environ Int 68:185–191

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Sheng N, Wang M, Zhang H, Dai J (2016) Zebrafish reproductive toxicity induced by chronic perfluorononanoate exposure. Aquat Toxicol 175:269–276

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB14040202) and the National Natural Science Foundation of China (Grants 31320103915, 21377128 and 21421002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayin Dai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, N., Zhou, X., Zheng, F. et al. Comparative hepatotoxicity of 6:2 fluorotelomer carboxylic acid and 6:2 fluorotelomer sulfonic acid, two fluorinated alternatives to long-chain perfluoroalkyl acids, on adult male mice. Arch Toxicol 91, 2909–2919 (2017). https://doi.org/10.1007/s00204-016-1917-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1917-2

Keywords

Navigation