Skip to main content

Advertisement

Log in

Associations between serum vitamin E concentration and bone mineral density in the US elderly population

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Mixed findings regarding effects of vitamin E on bone metabolism existed. We were the first to find a negative association between serum α-tocopherol concentration and bone mineral density in the US elderly population. Using vitamin E supplement as α-tocopherol to promote bone health was not warranted at this time.

Introduction

The aim of the study is to examine the associations between serum vitamin E (α-tocopherol and γ-tocopherol) status and bone mineral density (BMD) among the US elderly population.

Methods

We used data from the National Health and Nutrition Examination Survey (NHANES) 2005–2006. This cross-sectional study finally included 989 subjects who were not having liver diseases, kidney diseases, rheumatoid arthritis, or cancers; were not treated for osteoporosis; and were not taking steroids or female hormones. Multivariable linear regression models were employed to examine the associations between serum vitamin E (α-tocopherol and γ-tocopherol) concentration and BMDs of total spine and femoral neck after adjusting for covariates and potential confounders.

Results

Significant differences in serum α-tocopherol and γ-tocopherol levels, dietary intake of vitamin E as α-tocopherol, and BMDs of total spine and femoral neck were presented between male and female participants. Serum α-tocopherol and γ-tocopherol concentrations were found to be inversely correlated (r = −0.169, P < 0.001). In univariable linear models, significant negative associations between serum α-tocopherol and both total spine BMD (β = −0.0014, P = 0.002) and femoral neck BMD (β = −0.0017, P < 0.001) were found. Accounting for covariates, serum α-tocopherol level was negatively associated with femoral neck BMD (β = −0.0007, P = 0.028).

Conclusions

This study found a negative association between serum α-tocopherol concentration and femoral neck BMD in the US elderly population, suggesting a harmful effect of α-tocopherol on bone health. Future studies are warranted to further examine the dose-response relationships between individual vitamin E isomers and bone metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S, Dawson-Hughes B (2014) The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res 29:2520–2526

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cornwell DG, Ma J (2007) Studies in vitamin E: biochemistry and molecular biology of tocopherol quinones. Vitam Horm 76:99–134

    Article  CAS  PubMed  Google Scholar 

  3. Jiang Q, Christen S, Shigenaga MK, Ames BN (2001) Gamma-tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am J Clin Nutr 74:714–722

    CAS  PubMed  Google Scholar 

  4. La Fata G, Weber P, Mohajeri MH (2014) Effects of vitamin E on cognitive performance during ageing and in Alzheimer’s disease. Nutrients 6:5453–5472

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mathur P, Ding Z, Saldeen T, Mehta JL (2015) Tocopherols in the prevention and treatment of atherosclerosis and related cardiovascular disease. Clin Cardiol 38:570–576

    Article  PubMed  Google Scholar 

  6. Chung MK, Kim DH, Ahn YC, Choi JY, Kim EH, and Son YI (2016) Randomized trial of vitamin c/e complex for prevention of radiation-induced xerostomia in patients with head and neck cancer. Otolaryngol Head Neck Surg

  7. Fujita K, Iwasaki M, Ochi H, Fukuda T, Ma C, Miyamoto T, Takitani K, Negishi-Koga T, Sunamura S, Kodama T et al (2012) Vitamin E decreases bone mass by stimulating osteoclast fusion. Nat Med 18:589–594

    Article  CAS  PubMed  Google Scholar 

  8. Muhammad N, Luke DA, Shuid AN, Mohamed N, Soelaiman IN (2012) Two different isomers of vitamin e prevent bone loss in postmenopausal osteoporosis rat model. Evid Based Complement Alternat Med 2012:161527

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mohamad S, Shuid AN, Mohamed N, Fadzilah FM, Mokhtar SA, Abdullah S, Othman F, Suhaimi F, Muhammad N, Soelaiman IN (2012) The effects of alpha-tocopherol supplementation on fracture healing in a postmenopausal osteoporotic rat model. Clinics (Sao Paulo) 67:1077–1085

    Article  Google Scholar 

  10. Shuid AN, Mehat Z, Mohamed N, Muhammad N, Soelaiman IN (2010) Vitamin E exhibits bone anabolic actions in normal male rats. J Bone Miner Metab 28:149–156

    Article  CAS  PubMed  Google Scholar 

  11. Hamidi MS, Corey PN, Cheung AM (2012) Effects of vitamin E on bone turnover markers among US postmenopausal women. J Bone Miner Res 27:1368–1380

    Article  CAS  PubMed  Google Scholar 

  12. Shi WQ, Liu J, Cao Y, Zhu YY, Guan K, Chen YM (2016) Association of dietary and serum vitamin E with bone mineral density in middle-aged and elderly Chinese adults: a cross-sectional study. Br J Nutr 115:113–120

    Article  CAS  PubMed  Google Scholar 

  13. Kanis JA, McCloskey EV, Johansson H, Oden A, Melton LJ 3rd, Khaltaev N (2008) A reference standard for the description of osteoporosis. Bone 42:467–475

    Article  CAS  PubMed  Google Scholar 

  14. Stone KL, Seeley DG, Lui LY, Cauley JA, Ensrud K, Browner W, Nevitt MC, Cummings SR, Research OF (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the study of osteoporotic fractures. J Bone Miner Res 18:1947–1954

    Article  PubMed  Google Scholar 

  15. Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, Eisman JA, Fujiwara S, Kroger H, Mellstrom D et al (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20:1185–1194

    Article  PubMed  Google Scholar 

  16. Leslie WD, Tsang JF, Caetano PA, Lix LM, Manitoba Bone Density P (2007) Effectiveness of bone density measurement for predicting osteoporotic fractures in clinical practice. J Clin Endocrinol Metab 92:77–81

    Article  CAS  PubMed  Google Scholar 

  17. Centers for Disease Control and Prevention (CDC), N.C.f.H.S.N., National Health and Nutrition Examination Survey (NHANES) Data 2005–2006 Vitamin E—Data Documentation and Laboratory Procedure Manuals

  18. Soroko SB, Barrettconnor E, Edelstein SL, Kritzsilverstein D (1994) Family history of osteoporosis and bone-mineral density at the axial skeleton—the rancho-Bernardo study. J Bone Miner Res 9:761–769

    Article  CAS  PubMed  Google Scholar 

  19. Ward KD, Klesges RC (2001) A meta-analysis of the effects of cigarette smoking on bone mineral density. Calcif Tissue Int 68:259–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kanis JA, Johnell O, Oden A, Johansson H, De Laet C, Eisman JA, Fujiwara S, Kroger H, McCloskey EV, Mellstrom D et al (2005) Smoking and fracture risk: a meta-analysis. Osteoporos Int 16:155–162

    Article  CAS  PubMed  Google Scholar 

  21. Berg KM, Kunins HV, Jackson JL, Nahvi S, Chaudhry A, Harris KA, Malik R, Arnsten JH (2008) Association between alcohol consumption and both osteoporotic fracture and bone density. Am J Med 121:406–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Holm JP, Hyldstrup L, and Jensen JB (2016) Time trends in osteoporosis risk factor profiles: a comparative analysis of risk factors, comorbidities, and medications over twelve years. Endocrine

  23. Wolf RL, Cauley JA, Pettinger M, Jackson R, Lacroix A, Leboff MS, Lewis CE, Nevitt MC, Simon JA, Stone KL et al (2005) Lack of a relation between vitamin and mineral antioxidants and bone mineral density: results from the Women’s Health Initiative. Am J Clin Nutr 82:581–588

    CAS  PubMed  Google Scholar 

  24. McNally AK, Anderson JM (2003) Foreign body-type multinucleated giant cell formation is potently induced by alpha-tocopherol and prevented by the diacylglycerol kinase inhibitor R59022. Am J Pathol 163:1147–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Iwaniec UT, Turner RT, Smith BJ, Stoecker BJ, Rust A, Zhang B, Vasu VT, Gohil K, Cross CE, Traber MG (2013) Evaluation of long-term vitamin E insufficiency or excess on bone mass, density, and microarchitecture in rodents. Free Radic Biol Med 65:1209–1214

    Article  CAS  PubMed  Google Scholar 

  26. Ke HZ, Crawford DT, Qi H, Chidsey-Frink KL, Simmons HA, Li M, Jee WS, Thompson DD (2001) Long-term effects of aging and orchidectomy on bone and body composition in rapidly growing male rats. J Musculoskelet Neuronal Interact 1:215–224

    CAS  PubMed  Google Scholar 

  27. Dennehy C, Tsourounis C (2010) A review of select vitamins and minerals used by postmenopausal women. Maturitas 66:370–380

    Article  CAS  PubMed  Google Scholar 

  28. Shuid AN, Mohamad S, Muhammad N, Fadzilah FM, Mokhtar SA, Mohamed N, Soelaiman IN (2011) Effects of alpha-tocopherol on the early phase of osteoporotic fracture healing. J Orthop Res 29:1732–1738

    Article  CAS  PubMed  Google Scholar 

  29. Hampson G, Edwards S, Sankaralingam A, Harrington DJ, Voong K, Fogelman I, Frost ML (2015) Circulating concentrations of vitamin E isomers: association with bone turnover and arterial stiffness in post-menopausal women. Bone 81:407–412

    Article  CAS  PubMed  Google Scholar 

  30. Macdonald HM, New SA, Golden MH, Campbell MK, Reid DM (2004) Nutritional associations with bone loss during the menopausal transition: evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of a detrimental effect of fatty acids. Am J Clin Nutr 79:155–165

    CAS  PubMed  Google Scholar 

  31. Mata-Granados JM, Cuenca-Acebedo R, Luque de Castro MD, Quesada Gomez JM (2013) Lower vitamin E serum levels are associated with osteoporosis in early postmenopausal women: a cross-sectional study. J Bone Miner Metab 31:455–460

    Article  CAS  PubMed  Google Scholar 

  32. Yang TC, Duthie GG, Aucott LS, Macdonald HM (2016) Vitamin E homologues alpha- and gamma-tocopherol are not associated with bone turnover markers or bone mineral density in peri-menopausal and post-menopausal women. Osteoporosis Int 27:2281–2290

    Article  CAS  Google Scholar 

  33. Traber MG (2007) Vitamin E regulatory mechanisms. Annu Rev Nutr 27:347–362

    Article  CAS  PubMed  Google Scholar 

  34. Huang HY, Appel LJ (2003) Supplementation of diets with alpha-tocopherol reduces serum concentrations of gamma- and delta-tocopherol in humans. J Nutr 133:3137–3140

    CAS  PubMed  Google Scholar 

  35. Wolf G (2006) How an increased intake of alpha-tocopherol can suppress the bioavailability of gamma-tocopherol. Nutr Rev 64:295–299

    Article  PubMed  Google Scholar 

  36. Berdnikovs S, Abdala-Valencia H, McCary C, Somand M, Cole R, Garcia A, Bryce P, Cook-Mills JM (2009) Isoforms of vitamin E have opposing immunoregulatory functions during inflammation by regulating leukocyte recruitment. J Immunol 182:4395–4405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cook-Mills J, Gebretsadik T, Abdala-Valencia H, Green J, Larkin EK, Dupont WD, Shu XO, Gross M, Bai C, Gao YT et al (2016) Interaction of vitamin E isoforms on asthma and allergic airway disease. Thorax 71:954–956

    Article  PubMed  Google Scholar 

  38. McLaughlin PJ, Weihrauch JL (1979) Vitamin E content of foods. J Am Diet Assoc 75:647–665

    CAS  PubMed  Google Scholar 

  39. Smith BJ, Lucas EA, Turner RT, Evans GL, Lerner MR, Brackett DJ, Stoecker BJ, Arjmandi BH (2005) Vitamin E provides protection for bone in mature hindlimb unloaded male rats. Calcif Tissue Int 76:272–279

    Article  CAS  PubMed  Google Scholar 

  40. Traber MG (2013) Mechanisms for the prevention of vitamin E excess. J Lipid Res 54:2295–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thurnham DI, Davies JA, Crump BJ, Situnayake RD, Davis M (1986) The use of different lipids to express serum tocopherol—lipid ratios for the measurement of vitamin-E status. Ann Clin Biochem 23:514–520

    Article  CAS  PubMed  Google Scholar 

  42. Ford L, Farr J, Morris P, Berg J (2006) The value of measuring serum cholesterol-adjusted vitamin E in routine practice. Ann Clin Biochem 43:130–134

    Article  CAS  PubMed  Google Scholar 

  43. Greaves RF, Woollard GA, Hoad KE, Walmsley TA, Johnson LA, Briscoe S, Koetsier S, Harrower T, Gill JP (2014) Laboratory medicine best practice guideline: vitamins a, e and the carotenoids in blood. Clin Biochem Rev 35:81–113

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge grant support from the National Natural Science Foundation of China (no. 81373661).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zhang.

Ethics declarations

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Hu, X. & Zhang, J. Associations between serum vitamin E concentration and bone mineral density in the US elderly population. Osteoporos Int 28, 1245–1253 (2017). https://doi.org/10.1007/s00198-016-3855-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3855-5

Keywords

Navigation