Skip to main content
Log in

Multi-dimensional particle filter-based estimation of inter-system phase biases for multi-GNSS real-time integer ambiguity resolution

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

In multi-GNSS integration, fixing inter-system double-difference ambiguities to integers is still a challenge due to the existence of inter-system biases (ISB) when mixed types of GNSS receivers are used. It has been shown that when ISB is known, the inter-system ambiguities can be fixed and the reliability of ambiguity fixing can be improved significantly, especially under poor conditions when the number of observed satellites is small. In traditional methods, the intra-system ambiguity is fixed first; then, the ISB is estimated to ultimately fix the inter-system ambiguity. In our work, we use the particle filter-based method to estimate the ISB parameter and fix the inter-system ambiguities to integers at the same time. This method shows higher reliability and higher ambiguity fixing rate. Nevertheless, the existing particle filter approach for ISB parameter estimation is a one-dimensional algorithm. When satellites from three or more systems are observed, there are two or more ISB parameters. We extend the current one-dimensional particle filter approach to multi-dimensional case and estimate multi-ISB parameters in this study. We first present a multi-dimensional particle filter approach that can estimate multi-ISB parameters simultaneously. We also show that the RATIO values can be employed to judge the quality of multi-dimensional ISB values. Afterward, a two-dimensional particle filter approach is taken as an example to validate this approach. For example, in the experiment of GPS L5, Galileo E5a and QZSS L5 integration with 6 satellites using the IGS baseline SIN0-SIN1, only three ambiguities are resolved to integer when the ISBs are unknown. The integer ambiguity fixing rate is 41.0% with 53% of the ambiguity-fixed solutions having positioning errors larger than 3 cm. However, when our approach is adopted, the number of integer ambiguity parameters increases to five. The integer ambiguity fixing rate increases to 99.7% with 100% of ambiguity-fixed solutions having positioning errors smaller than 3 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arulampalam S, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Sig Process 50(2):174–188

    Article  Google Scholar 

  • Blewitt G (1989) Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2000 km. J Geophys Res 94(B8):10187–10203

    Article  Google Scholar 

  • Candy J (2009) Bayesian signal processing: classical, modern and particle filtering methods. Wiley, Hoboken

    Book  Google Scholar 

  • Dach R, Brockmann E, Schaer S, Beutler G, Meindl M, Prange L et al (2009) GNSS processing at CODE: status report. J Geod 83(3–4):353–365

    Article  Google Scholar 

  • Dong D, Bock Y (1989) Global positioning system network analysis with phase ambiguity resolution applied to crustal deformation studies in California. J Geophys Res 94(B4):3949–3966

    Article  Google Scholar 

  • Doucet A, Freitas N, Gordon N (2001) Sequential Monte Carlo methods in practice. Springer, New York

    Book  Google Scholar 

  • Euler H, Schaffrin B (1991) On a measure of discernibility between different ambiguity solutions in the static-kinematic GPS-mode. In: Proceedings of the international symposium on kinematic systems in Geodesy, surveying, and remote sensing. Springer, Berlin, pp 285–295

  • Force D, Miller J (2013) Combined global navigation satellite systems in the space service volume. In: Proceedings of the ION international technical meeting

  • Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008) Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geod 82(7):389–399

    Article  Google Scholar 

  • Gordon J, Salmond J, Smith F (1993) Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc Radar Signal Process 140(2):107–113

    Article  Google Scholar 

  • Gustafsson F, Gunnarsson F, Bergman N, Forssell U, Jansson J, Karlsson R, Nordlund P (2002) Particle filters for positioning, navigation, and tracking. IEEE Trans Signal Process 50(2):425–437

    Article  Google Scholar 

  • Haug A (2012) Bayesian estimation and tracking: a practical guide. Wiley, Hoboken

    Book  Google Scholar 

  • Ineichen D, Brockmann E, Schaer S (2008) Processing combined GPS/GLONASS data at Swisstopo’s local analysis center. In: Proceedings of EUREF symposium

  • Julien O, Alves P, Cannon EM, Zhang W (2003) A tightly coupled GPS/GALILEO combination for improved ambiguity resolution. In: Proceedings of the European navigation conference (S. 1-14)

  • Khodabandeh A, Teunissen P (2016) PPP-RTK and inter-system biases: the ISB look-up table as a means to support multi-system PPP-RTK. J Geod 90:837–851. https://doi.org/10.1007/s00190-016-0914-9

    Article  Google Scholar 

  • Kozlov D, Tkachenko M (1997) Instant RTK cm with low cost GPS + GLONASS [TM] C/A receivers. In: Proceedings of ION GPS 1997, Kansas City, MO, September 1997, pp 1559–1570

  • Kubo N, Tokura H, Pullen S (2018) Mixed GPS-BeiDou RTK with inter-systems bias estimation aided by CSAC. GPS Solut 22:5. https://doi.org/10.1007/s10291-017-0670-1

    Article  Google Scholar 

  • Li X, Ge M, Dai X, Ren X, Mathias F, Jens W (2015) Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. J Geod 89(6):607–635

    Article  Google Scholar 

  • Melgard T, Tegedor J, Jong K, Lapucha D, Lachapelle G (2013) Interchangeable integration of GPS and Galileo by using a common system clock in PPP. In: Proceedings of ION GNSS, Nashville, TN, September 2013, pp 16–20

  • Odijk D, Teunissen PJ (2013a) Characterization of between-receiver GPS-Galileo inter-system biases and their effect on mixed ambiguity resolution. GPS Solut 17(4):521–553

    Article  Google Scholar 

  • Odijk D, Teunissen PJ (2013b) Estimation of differential inter-system biases between the overlapping frequencies of GPS, Galileo, BeiDou and QZSS. In: Proceedings of the 4th international colloquium scientific and fundamental aspects of the Galileo programme (S. 4-6). Prague, Czech Republic

  • Odolinski R, Teunissen PJ, Odijk D (2014) Combined BDS, Galileo, QZSS and GPS single-frequency RTK. GPS Solut 19(1):151–163

    Article  Google Scholar 

  • Paziewski J, Wielgosz P (2015) Accounting for Galileo-GPS inter-system biases in precise satellite positioning. J Geod 89(1):81–93

    Article  Google Scholar 

  • Teunissen P (1996) GPS carrier phase ambiguity fixing concepts. In: Kleusberg A, Teunissen P (eds) GPS for geodesy. Springer, Berlin, pp 263–336

    Chapter  Google Scholar 

  • Tian Y, Ge M, Neitzel F (2015) Particle filter-based estimation of inter-frequency phase bias for real-time GLONASS integer ambiguity resolution. J Geod 89(11):1145–1158

    Article  Google Scholar 

  • Tian Y, Ge M, Neitzel F (2016) Particle filter-based estimation of inter-system phase bias for multi-GNSS integer ambiguity resolution. GPS Solut. https://doi.org/10.1007/s10291-016-0584-3

    Google Scholar 

  • Tian Y, Liu Z, Ge M, Neitzel F (2017) Determining inter-system bias of GNSS signals with narrowly spaced frequencies for GNSS positioning. J Geod. https://doi.org/10.1007/s00190-017-1100-4

    Google Scholar 

  • Verhagen S, Teunissen P (2013) The ratio test for future GNSS ambiguity resolution. GPS Solut 17(4):535–548

    Article  Google Scholar 

  • Wang J, Rizos C, Stewart M, Leick A (2001) GPS and GLONASS integration: modeling and ambiguity resolution issues. GPS Solut 5(1):55–64

    Article  Google Scholar 

Download references

Acknowledgements

Zhizhao Liu thanks the support of Hong Kong Research Grants Council (RGC) Project (PolyU 5203/13E, B-Q37X) and Hong Kong Polytechnic University (Projects 152103/14E, 152168/15E and 1-BBYH) and the grant supports from the Key Program of the National Natural Science Foundation of China (Project No.: 41730109). Yumiao Tian is supported by the Young Scientists Fund of the National Natural Science Foundation of China (Project No.: 41804022) and the Fundamental Research Funds for the Central Universities (2682018CX33).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhizhao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Liu, Z., Ge, M. et al. Multi-dimensional particle filter-based estimation of inter-system phase biases for multi-GNSS real-time integer ambiguity resolution. J Geod 93, 1073–1087 (2019). https://doi.org/10.1007/s00190-018-01226-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-018-01226-6

Keywords

Navigation