Skip to main content

Advertisement

Log in

Future global SLR network evolution and its impact on the terrestrial reference frame

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Satellite laser ranging (SLR) is an important technique that contributes to the determination of terrestrial geodetic reference frames, especially to the realization of the origin and the scale of global networks. One of the major limiting factors of SLR-derived reference frame realizations is the datum accuracy which significantly suffers from the current global SLR station distribution. In this paper, the impact of a potential future development of the SLR network on the estimated datum parameters is investigated. The current status of the SLR network is compared to a simulated potential future network featuring additional stations improving the global network geometry. In addition, possible technical advancements resulting in a higher amount of observations are taken into account as well. As a result, we find that the network improvement causes a decrease in the scatter of the network translation parameters of up to 24%, and up to 20% for the scale, whereas the technological improvement causes a reduction in the scatter of up to 27% for the translations and up to 49% for the scale. The Earth orientation parameters benefit by up to 15% from both effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. http://www.ggos.org.

  2. 2015 ILRS GB meeting: minutes and slides.

  3. http://www.ggos.org.

  4. General Assembly resolution 69/266, available from undocs.org/A/RES/69/266.

References

  • Ackerman S et al (2015) MODIS atmosphere L2 cloud mask product. NASA MODIS adaptive processing system, Goddard Space Flight Center, USA. https://doi.org/10.5067/MODIS/MOD35_L2.006

  • Appleby G, Rodríguez J, Altamimi Z (2016) Assessment of the accuracy of global geodetic satellite laser ranging observations and estimated impact on ITRF scale: estimation of systematic errors in LAGEOS observations 1993–2014. J Geodesy 90(12):1371–1388. https://doi.org/10.1007/s00190-016-0929-2

    Article  Google Scholar 

  • Bloßfeld M, Seitz M, Angermann D (2014) Non-linear station motions in epoch and multi-year reference frames. J Geodesy 88(1):45–63. https://doi.org/10.1007/s00190-013-0668-6

    Article  Google Scholar 

  • Bloßfeld M (2015) The key role of Satellite Laser Ranging towards the integrated estimation of geometry, rotation and gravitational field of the Earth. PhD thesis, Reihe C of the Deutsche Geodätische Kommission. ISBN: 978-3-7696-5157-7

  • Bloßfeld M, Seitz M, Angermann D (2016) Epoch reference frames as short-term realizations of the ITRS–datum stability versus sampling. IAG symposia 143, Springer, Berlin, pp 26–32. https://doi.org/10.1007/1345_2015_91

  • Collilieux X, Altamimi Z, Ray J, van Dam T, Wu X (2009) Effect of the satellite laser ranging network distribution on geocenter motion estimates. J Geophys Res. https://doi.org/10.1029/2008.JB005727

  • Coulot D, Berio P, Bonnefond P, Exertier P, Féraudy D, Laurain O, Deleflie F (2008) Satellite laser ranging biases and terrestrial reference frame scale factor. In: Sideris MG (ed) Observing our changing earth. International association of geodesy symposia, vol 133, pp 39–46. https://doi.org/10.1007/978-3-540-85426-5_5

  • Gerstl M (1997) Parameterschätzung in DOGS-OC. DGFI Interner Bericht, MG/01/1996/DGFU, 2nd edn (in German)

  • Gerstl M, Müller H, Ehrensperger W (2008) DOGS-CS Kombination und Lösung großer Gleichungssysteme. In: DGFI Interner Bericht, MG/01/1995/DGFI (in German)

  • Förste C, Bruinsma S, Shako R, Marty J-C, Flechtner F, Abrikosov O, Dahle C, Lemoine J-M, Neumayer H, Biancale R, Barthelmes F, König R, Balmino G (2011) EIGEN-6–a new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse. Geophysical Research Abstracts, vol 13, EGU2011-3242-2

  • Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56(5):394–415. https://doi.org/10.1007/s10236-006-0086-x

    Article  Google Scholar 

  • National Research Council (2010) Precise geodetic infrastructure: national requirements for a shared resource. The National Academies Press, Washington. https://doi.org/10.17226/12954

  • Otsubo T, Matsuo K, Aoyama Y, Yamamoto K, Hobiger T, Kubo-oka T, Sekido M (2016) Effective expansion of satellite laser ranging network to improve global geodetic parameters. Earth Planets Space 68:65. https://doi.org/10.1186/s40623-016-0447-8

    Article  Google Scholar 

  • Pavlis EC (2007) The global SLR network and the origin and scale of the TRF in the GGOS era. In: John L (ed) 15th International laser workshop, pp. 159–166, Geosciences Australia, Canberra, https://cddis.nasa.gov/lw15

  • Pavlis EC (2008) SLR and Global Reference Frames over the Next Decade. Invited talk at the NAS NRC panel on national requirements for precision geodetic infrastructure, June 11–13 (2008) University of Colorado at Boulder. Boulder, Colorado

  • Pavlis EC, Kuzmicz-Cieslak M (2009) SLR and the next generation global geodetic networks. In: Schillack S (ed) Proceedings of 16th international laser workshop, pp 183–189. Space Research Center, Polish Academy of Sciences, Warszawa, Poland. https://cddis.nasa.gov/lw16

  • Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2):135–143. https://doi.org/10.1016/S0273-1177(02)00277-6

    Article  Google Scholar 

  • Plag HP, Pearlman MR (2009) Global geodetic observing system. In: Plag HP, Pearlman MR (eds) Meeting the requirements of a global society on a changing planet in 2020. Springer, Berlin. https://doi.org/10.1007/978-3-642-02686-7

  • Savcenko R, Bosch W (2010) EOT11a–empirical ocean tide model from multi-mission satellite altimetry. Deutsches Geodätisches Forschungsinstitut, Munich, Report No 89, hdl:10013/epic.43894.d001

  • Schuh H, König R, Ampatzidis D, Glaser S, Flechtner F, Heinkelmann R, Nilsson TJ (2016) GGOS-SIM: simulation of the reference frame for the global geodetic observing system. In: IAG symposia 143. Springer, Berlin, pp 1–6. https://doi.org/10.1007/1345_2015_217

  • Sośnica K, Thaller D, Jäggi A, Dach R, Beutler G (2012) Sensitivity of LAGEOS orbits to global gravity field models. Artif Satell 47(2):47–65. https://doi.org/10.2478/v10018-012-0013-y

    Google Scholar 

  • Sośnica K (2015) LAGEOS Sensitivity to ocean tides. Acta Geophys 63(4):1181–1203. https://doi.org/10.1515/acgeo-2015-0032

    Article  Google Scholar 

  • Tapley BD, Flechtner F, Bettadpur SV, Watkins MM (2013) The status and future prospect for GRACE after the first decade. Eos Trans., Fall Meet. Suppl., Abstract G22A-01

Download references

Acknowledgements

The authors want to thank the ILRS for providing the observations of the global geodetic SLR station network. Furthermore, the authors want to thank the German Research Foundation (DFG) for funding this work within the project “DIrect GEocentric Realisation of the American reference frame by combination of geodetic observation TechnIques” (DIGERATI) under grant No. SE 1916/5-1. E.C. Pavlis gratefully acknowledges the support of NASA grant NNX14AN50G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kehm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kehm, A., Bloßfeld, M., Pavlis, E.C. et al. Future global SLR network evolution and its impact on the terrestrial reference frame. J Geod 92, 625–635 (2018). https://doi.org/10.1007/s00190-017-1083-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-017-1083-1

Keywords

Navigation