Skip to main content
Log in

Chronological changes in cross-sectional area of the bone-patellar tendon-bone autograft after anatomic rectangular tunnel ACL reconstruction

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The purpose of this study was to evaluate the change in cross-sectional area (CSA) of bone-patellar tendon-bone (BTB) autografts up to 5 years after the anatomic rectangular tunnel (ART) anterior cruciate ligament reconstruction (ACLR). The changing pattern in CSA might be a potential indicator of the graft remodeling process.

Methods

Ninety-six (62 males, 34 females, mean age 27.0 years) patients were enrolled in this study with a total of 220 MRI scans after ART BTB ACLR to evaluate the CSA of the ACL autografts. The patients with first time unilateral ACLR that consented to undergo MRI evaluations at postoperative periods were included in this study. Intraoperatively, the CSA of the graft was measured directly using a custom-made area micrometer at the midpoint of the graft. Postoperatively, using an oblique axial slice MRI that was perpendicular to the long axis of the graft, the CSA of the graft was measured with digital radiology viewing program “SYNAPSE” at the midpoint of the graft. The postoperative MRI scans were classified into seven groups according to the period from ACLR to MRI evaluation: Group 0–2 months (m.), Group 3–6 m., Group 7–12 m., Group 1–2 years (y.), Group 2–3 y., Group 3–4 y., and Group 4 y.-. The percent increase of the CSA was calculated by dividing the postoperative CSA by the intraoperative CSA.

Results

The postoperative CSA was significantly larger than the intraoperative CSA in each group, with the exception of Group 0–2 m. The mean percent increase of the CSA in Group 0–2 m., 3–6 m., 7–12 m., 1–2 y., 2–3 y., 3–4 y., 4 y.- was 101.8 ± 18.2, 188.9 ± 27.4, 190.9 ± 43.7, 183.3 ± 28.9, 175.2 ± 27.9, 163.9 ± 19.8, 164.5 ± 25.4% respectively. The percent increase in Group 3–6 m., 7–12 m., 1–2 y., 2–3 y., 3–4 y., and 4 y.- was significantly greater than that in Group 0–2 m.

Conclusions

The CSA of the BTB autografts after the ART BTB ACLR increases rapidly by 3–6 months after ACLR, reached a maximum value of 190% at around 1 year, decreases gradually after that, and reaches a plateau at around 3 years. The current study might help clinicians to estimate an individual BTB autograft's remodeling stages when considering returning patients to sports.

Level of evidence

IV

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abe S, Kurosaka M, Iguchi T, Yoshiya S, Hirohata K (1993) Light and electron microscopic study of remodeling and maturation process in autogenous graft for anterior cruciate ligament reconstruction. Arthroscopy 9:394–405

    Article  CAS  PubMed  Google Scholar 

  2. Amiel D, Kleiner JB, Roux RD, Harwood FL, Akeson WH (1986) The phenomenon of “ligamentization”: anterior cruciate ligament reconstruction with autogenous patellar tendon. J Orthop Res 4:162–172

    Article  CAS  PubMed  Google Scholar 

  3. Arai Y, Hara K, Takahashi T, Urade H, Minami G, Takamiya H et al (2008) Evaluation of the vascular status of autogenous hamstring tendon grafts after anterior cruciate ligament reconstruction in humans using magnetic resonance angiography. Knee Surg Sports Traumatol Arthrosc 16:342–347

    Article  PubMed  Google Scholar 

  4. Arnoczky SP (1996) Biology of ACL reconstructions: what happens to the graft? Instr Course Lect 45:229–233

    CAS  PubMed  Google Scholar 

  5. Arnoczky SP, Tarvin GB, Marshall JL (1982) Anterior cruciate ligament replacement using patellar tendon. An evaluation of graft revascularization in the dog. J Bone Jt Surg Am 64:217–224

    Article  CAS  Google Scholar 

  6. Butler DL, Grood ES, Noyes FR, Olmstead ML, Hohn RB, Arnoczky SP et al (1989) Mechanical properties of primate vascularized vs. nonvascularized patellar tendon grafts; changes over time. J Orthop Res 7:68–79

    Article  CAS  PubMed  Google Scholar 

  7. Butler DL, Grood ES, Noyes FR, Zernicke RF, Brackett K (1984) Effects of structure and strain measurement technique on the material properties of young human tendons and fascia. J Biomech 17:579–596

    Article  CAS  PubMed  Google Scholar 

  8. Claes S, Verdonk P, Forsyth R, Bellemans J (2011) The “ligamentization” process in anterior cruciate ligament reconstruction: what happens to the human graft? A systematic review of the literature. Am J Sports Med 39:2476–2483

    Article  PubMed  Google Scholar 

  9. Clancy WG Jr, Narechania RG, Rosenberg TD, Gmeiner JG, Wisnefske DD, Lange TA (1981) Anterior and posterior cruciate ligament reconstruction in rhesus monkeys. J Bone Jt Surg Am 63:1270–1284

    Article  Google Scholar 

  10. Cohen J (1988) The analysis of variance. Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates, Hillsdale, pp 273–406

    Google Scholar 

  11. Falconiero RP, DiStefano VJ, Cook TM (1998) Revascularization and ligamentization of autogenous anterior cruciate ligament grafts in humans. Arthroscopy 14:197–205

    Article  CAS  PubMed  Google Scholar 

  12. Fukuda H, Asai S, Kanisawa I, Takahashi T, Ogura T, Sakai H et al (2019) Inferior graft maturity in the PL bundle after autograft hamstring double-bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 27:491–497

    Article  PubMed  Google Scholar 

  13. Hadjicostas PT, Soucacos PN, Paessler HH, Koleganova N, Berger I (2007) Morphologic and histologic comparison between the patella and hamstring tendons grafts: a descriptive and anatomic study. Arthroscopy 23:751–756

    Article  PubMed  Google Scholar 

  14. Hamada M, Shino K, Horibe S, Mitsuoka T, Toritsuka Y, Nakamura N (2005) Changes in cross-sectional area of hamstring anterior cruciate ligament grafts as a function of time following transplantation. Arthroscopy 21:917–922

    Article  PubMed  Google Scholar 

  15. Hamada M, Shino K, Mitsuoka T, Abe N, Horibe S (1998) Cross-sectional area measurement of the semitendinosus tendon for anterior cruciate ligament reconstruction. Arthroscopy 14:696–701

    Article  CAS  PubMed  Google Scholar 

  16. Hofbauer M, Soldati F, Szomolanyi P, Trattnig S, Bartolucci F, Fu F et al (2019) Hamstring tendon autografts do not show complete graft maturity 6 months postoperatively after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 27:130–136

    Article  PubMed  Google Scholar 

  17. Iriuchishima T, Shirakura K, Fu FH (2013) Graft impingement in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 21:664–670

    Article  PubMed  Google Scholar 

  18. Jackson DW, Grood ES, Goldstein JD, Rosen MA, Kurzweil PR, Cummings JF et al (1993) A comparison of patellar tendon autograft and allograft used for anterior cruciate ligament reconstruction in the goat model. Am J Sports Med 21:176–185

    Article  CAS  PubMed  Google Scholar 

  19. Janssen RP, Scheffler SU (2014) Intra-articular remodelling of hamstring tendon grafts after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 22:2102–2108

    Article  PubMed  Google Scholar 

  20. Kinugasa K, Hamada M, Yoneda K, Matsuo T, Mae T, Shino K (2017) Cross-sectional area of hamstring tendon autograft after anatomic triple-bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 25:1219–1226

    Article  PubMed  Google Scholar 

  21. Ma Y, Murawski CD, Rahnemai-Azar AA, Maldjian C, Lynch AD, Fu FH (2015) Graft maturity of the reconstructed anterior cruciate ligament 6 months postoperatively: a magnetic resonance imaging evaluation of quadriceps tendon with bone block and hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc 23:661–668

    Article  PubMed  Google Scholar 

  22. Mae T, Shino K, Matsumoto N, Yoneda K, Yoshikawa H, Nakata K (2014) Risk factors for ipsilateral graft rupture or contralateral anterior cruciate ligament tear after anatomic double-bundle reconstruction. Asia Pac J Sports Med Arthrosc Rehabil Technol 1:90–95

    Google Scholar 

  23. Mayr HO, Stoehr A, Dietrich M, von Eisenhart-Rothe R, Hube R, Senger S et al (2012) Graft-dependent differences in the ligamentization process of anterior cruciate ligament grafts in a sheep trial. Knee Surg Sports Traumatol Arthrosc 20:947–956

    Article  PubMed  Google Scholar 

  24. Min BH, Chung WY, Cho JH (2001) Magnetic resonance imaging of reconstructed anterior cruciate ligament. Clin Orthop Relat Res 393:237–243

    Article  Google Scholar 

  25. Muramatsu K, Hachiya Y, Izawa H (2008) Serial evaluation of human anterior cruciate ligament grafts by contrast-enhanced magnetic resonance imaging: comparison of allografts and autografts. Arthroscopy 24:1038–1044

    Article  PubMed  Google Scholar 

  26. Ntoulia A, Papadopoulou F, Ristanis S, Argyropoulou M, Georgoulis AD (2011) Revascularization process of the bone–patellar tendon–bone autograft evaluated by contrast-enhanced magnetic resonance imaging 6 and 12 months after anterior cruciate ligament reconstruction. Am J Sports Med 39:1478–1486

    Article  PubMed  Google Scholar 

  27. Orsi AD, Canavan PK, Vaziri A, Goebel R, Kapasi OA, Nayeb-Hashemi H (2017) The effects of graft size and insertion site location during anterior cruciate ligament reconstruction on intercondylar notch impingement. Knee 24:525–535

    Article  PubMed  Google Scholar 

  28. Pauzenberger L, Syré S, Schurz M (2013) “Ligamentization” in hamstring tendon grafts after anterior cruciate ligament reconstruction: a systematic review of the literature and a glimpse into the future. Arthroscopy 29:1712–1721

    Article  PubMed  Google Scholar 

  29. Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF (1993) Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J Bone Jt Surg Am 75:1795–1803

    Article  CAS  Google Scholar 

  30. Rougraff B, Shelbourne KD, Gerth PK, Warner J (1993) Arthroscopic and histologic analysis of human patellar tendon autografts used for anterior cruciate ligament reconstruction. Am J Sports Med 21:277–284

    Article  CAS  PubMed  Google Scholar 

  31. Sánchez M, Anitua E, Azofra J, Prado R, Muruzabal F, Andia I (2010) Ligamentization of tendon grafts treated with an endogenous preparation rich in growth factors: gross morphology and histology. Arthroscopy 26:470–480

    Article  PubMed  Google Scholar 

  32. Schützenberger S, Grabner S, Schallmayer D, Kontic D, Keller F, Fialka C (2020) The risk of graft impingement still exists in modern ACL surgery and correlates with degenerative MRI signal changes. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-020-06300-1

    Article  PubMed  Google Scholar 

  33. Shimizu K, Yoshiya S, Kurosaka M, Sugihara T, Beppu M, Aoki H (2007) Change in the cross-sectional area of a patellar tendon graft after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 15:515–521

    Article  CAS  PubMed  Google Scholar 

  34. Shino K, Kawasaki T, Hirose H, Gotoh I, Inoue M, Ono K (1984) Replacement of the anterior cruciate ligament by an allogeneic tendon graft. An experimental study in the dog. J Bone Jt Surg Br 66:672–681

    Article  CAS  Google Scholar 

  35. Shino K, Mae T, Tachibana Y (2015) Anatomic ACL reconstruction: rectangular tunnel/bone-patellar tendon-bone or triple-bundle/semitendinosus tendon grafting. J Orthop Sci 20:457–468

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shino K, Nakata K, Nakamura N, Toritsuka Y, Horibe S, Nakagawa S et al (2008) Rectangular tunnel double-bundle anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft to mimic natural fiber arrangement. Arthroscopy 24:1178–1183

    Article  PubMed  Google Scholar 

  37. Shino K, Nakata K, Nakamura N, Toritsuka Y, Nakagawa S, Horibe S (2005) Anatomically oriented anterior cruciate ligament reconstruction with a bone-patellar tendon-bone graft via rectangular socket and tunnel: a snug-fit and impingement-free grafting technique. Arthroscopy 21:1402

    Article  PubMed  Google Scholar 

  38. Tanaka Y, Yonetani Y, Shiozaki Y, Kitaguchi T, Sato N, Takeshita S et al (2010) Retear of anterior cruciate ligament grafts in female basketball players: a case series. Sports Med Arthrosc Rehabil Ther Technol 2:7

    PubMed  PubMed Central  Google Scholar 

  39. Tomita F, Yasuda K, Mikami S, Sakai T, Yamazaki S, Tohyama H (2001) Comparisons of intraosseous graft healing between the doubled flexor tendon graft and the bone-patellar tendon-bone graft in anterior cruciate ligament reconstruction. Arthroscopy 17:461–476

    Article  CAS  PubMed  Google Scholar 

  40. Toritsuka Y, Horibe S, Mitsuoka T, Nakamura N, Hamada M, Shino K (2003) Comparison between the cross-sectional area of bone-patellar tendon-bone grafts and multistranded hamstring tendon grafts obtained from the same patients. Knee Surg Sports Traumatol Arthrosc 11:81–84

    Article  CAS  PubMed  Google Scholar 

  41. van Groningen B, van der Steen MC, Janssen DM, van Rhijn LW, van der Linden AN, Janssen RPA (2020) Assessment of graft maturity after anterior cruciate ligament reconstruction using autografts: a systematic review of biopsy and magnetic resonance imaging studies. Arthrosc Sports Med Rehabil 2:e377–e388

    Article  PubMed  PubMed Central  Google Scholar 

  42. Warth RJ, Zandiyeh P, Rao M, Gabr RE, Tashman S, Kumaravel M et al (2020) Quantitative assessment of in vivo human anterior cruciate ligament autograft remodeling: a 3-dimensional UTE-T2* imaging study. Am J Sports Med 48:2939–2947

    Article  PubMed  Google Scholar 

  43. Weiler A, Peters G, Maurer J, Unterhauser FN, Sudkamp NP (2001) Biomechanical properties and vascularity of an anterior cruciate ligament graft can be predicted by contrast-enhanced magnetic resonance imaging. A 2-year study in sheep. Am J Sports Med 29:751–761

    Article  CAS  PubMed  Google Scholar 

  44. Yoshiya S, Nagano M, Kurosaka M, Muratsu H, Mizuno K (2000) Graft healing in the bone tunnel in anterior cruciate ligament reconstruction. Clin Orthop Relat Res 376:278–286

    Article  Google Scholar 

  45. Zaffagnini S, De Pasquale V, Marchesini Reggiani L, Russo A, Agati P, Bacchelli B et al (2007) Neoligamentization process of BTPB used for ACL graft: histological evaluation from 6 months to 10 years. Knee 14:87–93

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Mr. Masahito Ishihara and Mr. Yukihiro Taue for MRI technical support, and Ms. Mari Maekawa and Mr Michael D. Lovelady II for English editorial assistance.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

Dr. KK designed the study and drafted the manuscript. Dr. MH was responsible for the revision of the manuscript. Drs. YY and AT were responsible for the diagnosis and treatment of patients. Drs. TM, YT, and YT assisted Dr. KK in analyzing the data. Dr. KS supervised the manuscript preparation. All authors approved the final manuscript.

Corresponding author

Correspondence to Kazutaka Kinugasa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent from all subjects was obtained, and the appropriate institutional review board of Hoshigaoka Medical Center for human subject research approved the study protocol (ID: 1646).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinugasa, K., Hamada, M., Yonetani, Y. et al. Chronological changes in cross-sectional area of the bone-patellar tendon-bone autograft after anatomic rectangular tunnel ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 29, 3782–3792 (2021). https://doi.org/10.1007/s00167-020-06404-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-020-06404-8

Keywords

Navigation