Skip to main content
Log in

Matrix-associated stem cell transplantation is successful in treating talar osteochondral lesions

  • Ankle
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Osteochondral lesions (OCLs) of the talus are a challenging and increasingly recognized problem in chronic ankle pain. Many novel techniques exist to try and treat this challenging entity. Difficulties associated with treating OCLs include lesion location, size, chronicity, and problems associated with potential graft harvest sites. Matrix-associated stem cell transplantation (MAST) is one such treatment described for larger lesions > 15 mm2 or failed alternative therapies. This cohort study describes a 3 year review of the outcomes of talar lesions treated with MAST.

Methods

A review of all patients treated with MAST by a single surgeon was conducted. Pre-operative radiographs, MRIs, and FAOS outcome questionnaire scores were reviewed. Intraoperative classification was undertaken to correlate with imaging. Post-operative outcomes included FAOS scores, return to sport, revision surgery/failure of treatment, and progression to ankle fusion.

Results

In this study, 38 OCLs in 32 patients were identified. Median patient age was 35 years of which (68.8%) were male. Median length of follow-up was 36.7 months (range 12–64 months). (83%) returned to playing sport. Twenty-three patients underwent MAST in the setting of a failed previous operative attempt, with just nine having MAST as a first option. Nine patients out of 32 had a further procedure. Improvements were seen in all domains of the FAOS (p < 0.05).

Conclusion

MAST has demonstrated encouraging results in lesions which prove challenging to treat, even in a “failed microfracture” cohort.

Level of evidence

IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Benthien JP, Behrens P (2010) Autologous matrix-induced chondrogenesis (AMIC). A one-step procedure for retropatellar articular resurfacing. Acta Orthop Belg 76(2):260–263

    PubMed  Google Scholar 

  2. Buda R, Vannini F, Castagnini F et al (2015) Regenerative treatment in osteochondral lesions of the talus: autologous chondrocyte implantation versus one-step bone marrow derived cells transplantation. Int Orthop 39(5):893–900

    Article  PubMed  Google Scholar 

  3. Chuckpaiwong B, Berkson EM, Theodore GH (2008) Microfracture for osteochondral lesions of the ankle: outcome analysis and outcome predictors of 105 cases. Arthroscopy 24(1):106–112

    Article  PubMed  Google Scholar 

  4. Choi WJ, Park KK, Kim BS et al (2009) Osteochondral lesion of the talus: is there a critical defect size for poor outcome? Am J Sports Med 37(10):1974–1980

    Article  PubMed  Google Scholar 

  5. Dashtdar H, Rothan HA, Tay T et al (2011) A preliminary study comparing the use of allogenic chondrogenic pre-differentiated and undifferentiated mesenchymal stem cells for the repair of full thickness articular cartilage defects in rabbits. J Orthop Res 29(9):1336–1342

    Article  PubMed  Google Scholar 

  6. Gao L, Orth P, Cucchiarini M et al (2019) Autologous matrix-induced chondrogenesis: a systematic review of the clinical evidence. Am J Sports Med 47(1):222–231

    Article  PubMed  Google Scholar 

  7. Giannini S, Vannini F (2004) Operative treatment of osteochondral lesions of the talar dome: current concepts review. Foot Ankle Int 25(3):168–175

    Article  PubMed  Google Scholar 

  8. Giannini S, Battaglia M, Buda R et al (2009) Surgical treatment of osteochondral lesions of the talus by open-field autologous chondrocyte implantation: a 10-year follow-up clinical and magnetic resonance imaging T2-mapping evaluation. Am J Sports Med 37(1):112 s–118 s

    Article  Google Scholar 

  9. Giannini S, Buda R, Battaglia M et al (2013) One-Step Repair in Talar Osteochondral Lesions. 4-Year Clinical Results and T2-Mapping Capability in Outcome Prediction. Am J Sports Med 41(3):511–518

    Article  PubMed  Google Scholar 

  10. Giannini S, Buda R, Ruffilli A et al (2014) Arthroscopic autologous chondrocyte implantation in the ankle joint. Knee Surg Sports Traumatol Arthrosc 22(6):1311–1319

    Article  PubMed  Google Scholar 

  11. Giza E, Sullivan M, Ocel D et al (2010) Matrix-induced autologous chondrocyte implantation of talus articular defects. Foot Ankle Int 31(9):747–753

    Article  PubMed  Google Scholar 

  12. Gooding CR, Bartlett W, Bentley G et al (2006) A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: Periosteum covered versus type I/III collagen covered. Knee 13(3):203–210

    Article  CAS  PubMed  Google Scholar 

  13. Hangody L, Vásárhelyi G, Hangody LR et al (2008) Autologous osteochondral grafting–technique and long-term results Injury 39(1):S32-39

    Article  Google Scholar 

  14. Hannon CP, Smyth NA, Murawski CD et al (2014) Osteochondral lesions of the talus: aspects of current management. Bone Joint J 96-b(2):164–171

    Article  CAS  PubMed  Google Scholar 

  15. Hannon CP, Murawski CD, Fansa AM et al (2013) Microfracture for osteochondral lesions of the talus: a systematic review of reporting of outcome data. Am J Sports Med 41(3):689–695

    Article  PubMed  Google Scholar 

  16. Hepple S, Winson IG, Glew D (1999) Osteochondral lesions of the talus: a revised classification. Foot Ankle Int 20:789–793

    Article  CAS  PubMed  Google Scholar 

  17. Kennedy JG, Murawski CD (2011) The treatment of osteochondral lesions of the talus with autologous osteochondral transplantation and bone marrow aspirate concentrate: surgical technique. Cartilage 2(4):327–336

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kubosch EJ, Erdle B, Izadpanah K et al (2016) Clinical outcome and T2 assessment following autologous matrix-induced chondrogenesis in osteochondral lesions of the talus. Int Orthop 40(1):65–71

    Article  PubMed  Google Scholar 

  19. Lambers KTA, Dahmen J, Reilingh ML et al (2018) No superior surgical treatment for secondary osteochondral defects of the talus. Knee Surg Sports Traumatol Arthrosc 26(7):2158–2170

    Article  PubMed  Google Scholar 

  20. Looze CA, Capo J, Ryan MK et al (2017) Evaluation and management of osteochondral lesions of the talus. Cartilage 8(1):19–30

    Article  PubMed  Google Scholar 

  21. McGoldrick NP, Murphy EP, Kearns SR (2018) Osteochondral lesions of the ankle: The current evidence supporting scaffold-based techniques and biological adjuncts. Foot Ankle Surg 24(2):86–91

    Article  CAS  PubMed  Google Scholar 

  22. Murawski CD, Foo LF, Kennedy JG (2010) A review of arthroscopic bone marrow stimulation techniques of the talus: the good, the bad, and the causes for concern. Cartilage 1(2):137–144

    Article  PubMed  PubMed Central  Google Scholar 

  23. Murawski CD, Kennedy JG (2013) Operative treatment of osteochondral lesions of the talus. J Bone Joint Surg Am 95(11):1045–1054

    Article  PubMed  Google Scholar 

  24. Murphy EP, Fenelon C, McGoldrick NP et al (2018) Bone marrow aspirate concentrate and microfracture technique for talar osteochondral lesions of the ankle. Arthrosc Tech. https://doi.org/10.1016/j.eats.2017.10.011

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nejadnik H, Hui JH, Feng Choong EP et al (2010) Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med 38(6):1110–1116

    Article  PubMed  Google Scholar 

  26. Pestka JM, Bode G, Salzmann G et al (2012) Clinical outcome of autologous chondrocyte implantation for failed microfracture treatment of full-thickness cartilage defects of the knee joint. Am J Sports Med 40(2):325–331

    Article  PubMed  Google Scholar 

  27. Raikin SM (2004) Stage VI: massive osteochondral defects of the talus. Foot Ankle Clin 9(4):737–744

    Article  PubMed  Google Scholar 

  28. Ramponi L, Yasui Y, Murawski CD et al (2017) Lesion size is a predictor of clinical outcomes after bone marrow stimulation for osteochondral lesions of the talus: a systematic review. Am J Sports Med 45(7):1698–1705

    Article  PubMed  Google Scholar 

  29. Reddy S, Pedowitz DI, Parekh SG et al (2007) The morbidity associated with osteochondral harvest from asymptomatic knees for the treatment of osteochondral lesions of the talus. Am J Sports Med 35(1):80–85

    Article  PubMed  Google Scholar 

  30. Richter M, Zech S (2013) Matrix-associated stem cell transplantation (MAST) in chondral defects of foot and ankle is effective. Foot Ankle Surg 19(2):84–90

    Article  PubMed  Google Scholar 

  31. Richter M, Zech S (2017) Matrix-associated stem cell transplantation (MAST) in chondral lesions at the ankle as part of a complex surgical approach 5-year-follow-up in 100 patients. Foot Ankle Surg. https://doi.org/10.1016/j.fas.2017.11.004

    Article  PubMed  Google Scholar 

  32. Roos EM, Brandsson S, Karlsson J (2001) Validation of the foot and ankle outcome score for ankle ligament reconstruction. Foot Ankle Int 22(10):788–794

    Article  CAS  PubMed  Google Scholar 

  33. Saxena A, Eakin C (2007) Articular talar injuries in athletes: results of microfracture and autogenous bone graft. Am J Sports Med 35(10):1680–1687

    Article  PubMed  Google Scholar 

  34. Shaikh N, Seah MKT, Khan WS (2017) Systematic review on the use of autologous matrix-induced chondrogenesis for the repair of articular cartilage defects in patients. World J Orthop 8(7):588–601

    Article  Google Scholar 

  35. Temenoff JS, Mikos AG (2000) Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21(5):431–440

    Article  CAS  PubMed  Google Scholar 

  36. Valderrabano V, Leumann A, Rasch H et al (2009) Knee-to-ankle mosaicplasty for the treatment of osteochondral lesions of the ankle joint. Am J Sports Med 37(1):105S–105S11S

    Article  PubMed  Google Scholar 

  37. Valderrabano V, Miska M, Leumann A et al (2013) Reconstruction of osteochondral lesions of the talus with autologous spongiosa grafts and autologous matrix-induced chondrogenesis. Am J Sports Med 41(3):519–527

    Article  PubMed  Google Scholar 

  38. Van Dijk C, Reilingh M, Zengerink M et al (2010) Osteochondral defects in the ankle: why painful? Knee Surg Sports Traumatol Arthrosc 2010;18(5):570–580

  39. Verhagen RA, Struijs PA, Bossuyt PM et al (2003) Systematic review of treatment strategies for osteochondral defects of the talar dome. Foot Ankle Clin 8(2):233–242

    Article  PubMed  Google Scholar 

  40. Wiewiorski M, Werner L, Paul J et al (2016) Sports activity after reconstruction of osteochondral lesions of the talus with autologous spongiosa grafts and autologous matrix-induced chondrogenesis. Am J Sports Med 44(10):2651–2658

    Article  PubMed  Google Scholar 

  41. Zhang J, Cohen Y, Wang J et al (2015) The costs associated with the perioperative management of articular cartilage lesions in the United States. Orthop J Sports Med 3(7 suppl2):2325967115S00119

    PubMed Central  Google Scholar 

Download references

Funding

No funding was utilized.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelyn P. Murphy.

Ethics declarations

Conflict of interest

The authors declare that they have no competing conflicts of interest.

Ethical approval

Ethical approval for this study was granted by institutional review board through Merlin Park Clinical Research Ethics Committee, I.D. number C.A. 2091.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murphy, E.P., Fenelon, C., Egan, C. et al. Matrix-associated stem cell transplantation is successful in treating talar osteochondral lesions. Knee Surg Sports Traumatol Arthrosc 27, 2737–2743 (2019). https://doi.org/10.1007/s00167-019-05452-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-019-05452-z

Keywords

Navigation