Skip to main content
Log in

Stability of supersonic boundary layer over an unswept wing with a parabolic airfoil

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Under the low-noise Mach 3 flight conditions for a supersonic passenger aircraft having unswept wings with a thin parabolic airfoil, laminar-turbulent transition is due to amplification of the first mode. Stability of a local self-similar boundary layer over such a wing is investigated both using the \(e^{N}\) method in the framework of linear stability theory and direct numerical simulation (DNS). It is found that the instability amplitude should reach a maximum over the entire spectral range above the profiles of 2.5% and thicker. The locus of maximum appears at the trailing edge and moves to the leading edge as the profile becomes thicker, while the maximum amplitude decreases. The theoretical findings are supported by DNS of the linear wave packets propagating in the boundary layer. Significance of these results to the design of laminar supersonic wings is discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets can be accessed via corresponding author.

References

  1. Klochkov, V.V., Rozhdestvenskaya, S.M.: Analysis of prerequisites for the formation of supersonic passenger air transport and aircraft markets. Innovations 250(8), 60–66 (2019)

    Google Scholar 

  2. Joslin, R.D.: Aircraft laminar flow control. Annu. Rev. Fluid Mech. (1998). https://doi.org/10.1146/annurev.fluid.30.1.1

    Article  Google Scholar 

  3. Sturdza, P.: Extensive Supersonic Natural Laminar Flow on the Aerion Business Jet. In: 45th AIAA Aerospace Sciences Meeting and Exhibit (2007). https://doi.org/10.2514/6.2007-685

  4. Morkovin, M.V., Reshotko, E., Herbert, T.: Transition in open flow systems: a reassessment. Bull. Am. Phys. Soc. 39(9), 1–31 (1994)

    Google Scholar 

  5. Zurigat, Y.H., Nayfeh, A.H., Masad, J.A.: Effect of pressure gradient on the stability of compressible boundary layers. AIAA J. (1992). https://doi.org/10.2514/3.11206

    Article  Google Scholar 

  6. Masad, J.A., Zurigat, Y.H.: Effect of pressure gradient on first mode of instability in compressible boundary layers. Phys. Fluids (1994). https://doi.org/10.1063/1.868384

    Article  Google Scholar 

  7. Ren, J., Fu. S.: Effect of pressure gradient on the stability of hypersonic boundary layer flows. In: AIAA, p. 2134 (2017). https://doi.org/10.2514/6.2017-2134

  8. Chuvakhov, P.V., Egorov, I.V., Ilyukhin, I.M., Obraz, A.O., Fedorov, A.V.: Boundary-layer instabilities in supersonic expansion corner flows. AIAA J. (2021). https://doi.org/10.2514/1.J060145

    Article  Google Scholar 

  9. Chuvakhov, P.V., Egorov, I.V.: Numerical simulation of disturbance evolution in the supersonic boundary layer over an expansion corner. Fluid Dyn. (2021). https://doi.org/10.1134/s0015462821050025

    Article  MathSciNet  Google Scholar 

  10. Liebhardt, B., Lütjens, K., Tracy, R.R., Haas, A.O.: Exploring the prospect of small supersonic airliners—a case study based on the Aerion AS2 Jet. In: 17th AIAA Aviation Technology, Integration, and Operations Conference (2017). https://doi.org/10.2514/6.2017-3588

  11. Chuvakhov, P.V., Fedorov, A.V., Obraz, A.O., Ilyukhin, I.M.: Disturbance evolution over an upswept wing in a Mach 3 flow. In: AIP Conference Proceedings (2021). https://doi.org/10.1063/5.0051730

  12. Malik, M., Zang, T., Bushnell, D.: Boundary layer transition in hypersonic flows. In: AIAA Paper (1990). https://doi.org/10.2514/6.1990-5232

  13. Masson, C., Boivin, S., Langlois, M., Paraschivoiu, I.: Curvature and nonparallel effects in 3-D compressible transition analysis. In: 35th Aerospace Sciences Meeting and Exhibit (1997). https://doi.org/10.2514/6.1997-824

  14. Egorov, I.V., Novikov, A.V.: Direct numerical simulation of boundary layer flow over a flat plate at hypersonic flow speeds. Comput. Math. Math. Phys. (2016). https://doi.org/10.1134/S0965542516060129

    Article  Google Scholar 

  15. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. (1996). https://doi.org/10.1006/jcph.1996.0130

    Article  MathSciNet  Google Scholar 

  16. Sychev, V.V., Ruban, A.I., Sychev, V.V., Korolev, G.L., Goldstein, M.E.: Asymptotic Theory of Separated Flows. Cambridge University Press, Cambridge (1998). https://doi.org/10.1017/CBO9780511983764

    Book  Google Scholar 

  17. Ashley, H., Landahl, M.: Aerodynamics of Wings and Bodies. Reading, Massachusettes (1965)

    Google Scholar 

  18. Lagerstrom, P.A.: Laminar Flow Theory. Princeton University Press, Princeton (1996)

    Book  Google Scholar 

  19. Ginoux, J.J.: Laminar Boundary Layers, Course Note 104. von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse (1978)

    Google Scholar 

  20. Mack, L.M.: Boundary Layer Stability Theory. Jet Propulsion Laboratory, Pasadena (1969)

    Google Scholar 

  21. Obraz, A.O., Fedorov, A.V.: The high-speed flow stability (HSFS) software package for stability analysis of compressible boundary layers. TsAGI Sci. J. (2017). https://doi.org/10.1615/TsAGISciJ.2017022797

    Article  Google Scholar 

  22. Fischer, M.C.: Spreading of a turbulent disturbance. AIAA J. (1972). https://doi.org/10.2514/3.50265

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Anton Obraz (senior researcher of TsAGI and MIPT) for stability calculations using the boundary layer profiles extracted from DNS solution.

Funding

The work has been carried out at MIPT under the support of Russian Science Foundation (Project No. 19-79-10132).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributions to the manuscript preparation are nearly equal.

Corresponding author

Correspondence to I. M. Ilyukhin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Additional information

Communicated by Jean-Christophe ROBINET.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuvakhov, P.V., Ilyukhin, I.M. & Fedorov, A.V. Stability of supersonic boundary layer over an unswept wing with a parabolic airfoil. Theor. Comput. Fluid Dyn. 38, 1–13 (2024). https://doi.org/10.1007/s00162-023-00680-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-023-00680-z

Keywords

Navigation