Skip to main content
Log in

A computational investigation of the finite-time blow-up of the 3D incompressible Euler equations based on the Voigt regularization

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

We report the results of a computational investigation of two blow-up criteria for the 3D incompressible Euler equations. One criterion was proven in a previous work, and a related criterion is proved here. These criteria are based on an inviscid regularization of the Euler equations known as the 3D Euler–Voigt equations, which are known to be globally well-posed. Moreover, simulations of the 3D Euler–Voigt equations also require less resolution than simulations of the 3D Euler equations for fixed values of the regularization parameter \(\alpha >0\). Therefore, the new blow-up criteria allow one to gain information about possible singularity formation in the 3D Euler equations indirectly, namely by simulating the better-behaved 3D Euler–Voigt equations. The new criteria are only known to be sufficient criterion for blow-up. Therefore, to test the robustness of the inviscid-regularization approach, we also investigate analogous criteria for blow-up of the 1D Burgers equation, where blow-up is well known to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Larios, A., Titi, E.S.: On the higher-order global regularity of the inviscid Voigt-regularization of three-dimensional hydrodynamic models. Discrete Contin. Dyn. Syst. Ser. B 14(2/3 #15), 603 (2010)

  2. Beale, J.T., Kato, T., Majda, A.J.: Remarks on the breakdown of smooth solutions for the \(3\)-D Euler equations. Commun. Math. Phys. 94(1), 61 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berselli, L.C., Iliescu, T., Layton, W.J.: Mathematics of Large Eddy Simulation of Turbulent Flows. Scientific Computation. Springer, Berlin (2006)

    MATH  Google Scholar 

  4. Brachet, M.E., Meiron, D., Orszag, S., Nickel, B., Morf, R., Frisch, U.: Small-scale structure of the Taylor–Green vortex. J. Fluid Mech. 130, 411 (1983)

    Article  MATH  Google Scholar 

  5. Bustamante, M.D., Brachet, M.: Interplay between the Beale–Kato–Majda theorem and the analyticity-strip method to investigate numerically the incompressible Euler singularity problem. Phys. Rev. E 86, 066302 (2012)

    Article  Google Scholar 

  6. Cao, Y., Lunasin, E., Titi, E.S.: Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models. Commun. Math. Sci. 4(4), 823 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Oskolkov, A.P.: The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 38, 98 (1973). Boundary value problems of mathematical physics and related questions in the theory of functions, 7

  8. Oskolkov, A.P.: On the theory of unsteady flows of Kelvin–Voigt fluids, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 115, 191 (1982). Boundary value problems of mathematical physics and related questions in the theory of functions, 14

  9. Gibbon, J.D.: The three-dimensional Euler equations: where do we stand? Phys. D 237(14–17), 1894 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Böhm, M.: On Navier–Stokes and Kelvin–Voigt equations in three dimensions in interpolation spaces. Math. Nachr. 155, 151 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Catania, D.: Global existence for a regularized magnetohydrodynamic-\(\alpha \) model. Ann. Univ. Ferrara 56, 1 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Catania, D., Secchi, P.: Global existence for two regularized MHD models in three space-dimension. Portugal. Math. (N.S.) 68(1), 41–52 (2011)

  13. Larios, A., Lunasin, E., Titi, E.S.: Global well-posedness for the Boussinesq–Voigt equations (preprint) arXiv:1010.5024

  14. Ebrahimi, M.A., Holst, M., Lunasin, E.: The Navier-Stokes-Voight model for image inpainting. IMA J. App. Math. 78, 869–894 (2013). doi:10.1093/imamat/hxr069

    Article  MATH  MathSciNet  Google Scholar 

  15. Levant, B., Ramos, F., Titi, E.S.: On the statistical properties of the 3D incompressible Navier–Stokes–Voigt model. Commun. Math. Sci. 8(1), 277 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Khouider, B., Titi, E.S.: An inviscid regularization for the surface quasi-geostrophic equation. Commun. Pure Appl. Math. 61(10), 1331 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Olson, E., Titi, E.S.: Viscosity versus vorticity stretching: global well-posedness for a family of Navier–Stokes-alpha-like models. Nonlinear Anal. 66(11), 2427 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ramos, F., Titi, E.S.: Invariant measures for the 3D Navier–Stokes–Voigt equations and their Navier–Stokes limit. Discrete Contin. Dyn. Syst. 28(1), 375 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kalantarov, V.K., Levant, B., Titi, E.S.: Gevrey regularity for the attractor of the 3D Navier–Stokes–Voight equations. J. Nonlinear Sci. 19(2), 133 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kalantarov, V.K., Titi, E.S.: Global attractors and determining modes for the 3D Navier–Stokes–Voight equations. Chin. Ann. Math. B 30(6), 697 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kuberry, P., Larios, A., Rebholz, L.G., Wilson, N.E.: Numerical approximation of the Voigt regularization for incompressible Navier–Stokes and magnetohydrodynamic flows. Comput. Math. Appl. 64(8), 2647 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Di Molfetta, G., Krstlulovic, G., Brachet, M.: Self-truncation and scaling in Euler–Voigt-\(\alpha \) and related fluid models. Phys. Rev. E 92, 013020 (2015)

    Article  MathSciNet  Google Scholar 

  23. Layton, W.J., Rebholz, L.G.: On relaxation times in the Navier–Stokes–Voigt model. Int. J. Comput. Fluid Dyn. 27(3), 184 (2013)

    Article  MathSciNet  Google Scholar 

  24. Brachet, M.E., Meiron, D., Orszag, S., Nickel, B., Morf, R., Frisch, U.: The Taylor–Green vortex and fully developed turbulence. J. Stat. Phys. 34(5–6), 1049 (1984)

    Article  MathSciNet  Google Scholar 

  25. Bustamante, M.D.: 3D Euler equations and ideal MHD mapped to regular systems: probing the finite-time blowup hypothesis. Phys. D 240(13), 1092 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Cichowlas, C., Brachet, M.E.: Evolution of complex singularities in Kida–Pelz and Taylor–Green inviscid flows. Fluid Dyn. Res. 36(4–6), 239 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Deng, J., Hou, T.Y., Yu, X.: Geometric properties and nonblowup of 3D incompressible Euler flow. Commun. Partial Differ. Equ. 30(1–3), 225 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Grafke, T., Grauer, R.: Finite-time Euler singularities: a Lagrangian perspective. Appl. Math. Lett. 26(4), 500 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  29. Grafke, T., Homann, H., Dreher, J., Grauer, R.: Finite-time Euler singularities: a Lagrangian perspective. Phys. D 237(14–17), 1932 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Hou, T.Y.: Blow-up or no blow-up? A unified computational and analytic approach to 3D incompressible Euler and Navier-Stokes equations. Acta Numer. 18, 277 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Hou, T.Y., Lei, Z., Luo, G., Wang, S., Zou, C.: On finite time singularity and global regularity of an axisymmetric model for the 3D Euler equations. Arch. Ration. Mech. Anal. 212(2), 683 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  32. Hou, T.Y., Li, R.: Dynamic depletion of vortex stretching and non-blowup of the 3-D incompressible Euler equations. J. Nonlinear Sci. 16(6), 639 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Hou, T.Y., Li, R.: Blowup or no blowup? The interplay between theory and numerics. Phys. D 237(14–17), 1937 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Hou, T.Y., Li, R.: Numerical study of nearly singular solutions of the 3-D incompressible Euler equations. In: Mathematics and Computation, a Contemporary View. Abel Symp., vol. 3. Springer, Berlin, pp. 39–66 (2008)

  35. Kerr, R.M.: Evidence for a singularity of the three-dimensional, incompressible Euler equations. Phys. Fluids A 5(7), 1725 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  36. Kerr, R.M.: Bounds for Euler from vorticity moments and line divergence. J. Fluid Mech. 729, R2, 13 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  37. Luo, G., Hou, T.Y.: Potentially singular solutions of the 3D incompressible Euler equations (2013). arXiv:1310.0497

  38. Luo, G., Hou, T.Y.: Toward the finite-time blowup of the 3D axisymmetric Euler equations: a numerical investigation. Multiscale Model. Simul. 12(4), 1722 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  39. Pouquet, A., Lee, E., Brachet, M.E., Mininni, P.D., Rosenberg, D.: The dynamics of unforced turbulence at high Reynolds number for Taylor–Green vortices generalized to MHD. Geophys. Astrophys. Fluid Dyn. 104(2–3), 115 (2010)

    Article  MathSciNet  Google Scholar 

  40. Siegel, M., Caflisch, R.E.: Calculation of complex singular solutions to the 3D incompressible Euler equations. Phys. D 238(23–24), 2368 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  41. Cheskidov, A., Shvydkoy, R.: A unified approach to regularity problems for the 3D Navier–Stokes and Euler equations: the use of Kolmogorov’s dissipation range. J. Math. Fluid Mech. 16(2), 263 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  42. Constantin, P., Fefferman, C.: Direction of vorticity and the problem of global regularity for the Navier–Stokes equations. Indiana Univ. Math. J. 42(3), 775 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  43. Constantin, P., Fefferman, C., Majda, A.J.: Geometric constraints on potentially singular solutions for the \(3\)-D Euler equations. Commun. Partial Differ. Equ. 21(3–4), 559 (1996)

    MATH  MathSciNet  Google Scholar 

  44. Ferrari, A.B.: On the blow-up of solutions of the \(3\)-D Euler equations in a bounded domain. Commun. Math. Phys. 155(2), 277 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  45. Gibbon, J.D., Titi, E.S.: The 3D incompressible Euler equations with a passive scalar: a road to blow-up? J. Nonlinear Sci. 23(6), 993 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  46. Kozono, H., Ogawa, T., Taniuchi, Y.: The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math. Z. 242(2), 251 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  47. Ponce, G.: Remarks on a paper: “Remarks on the breakdown of smooth solutions for the \(3\)-D Euler equations”. Commun. Math. Phys. 98(3), 349 (1985)

    Article  MATH  Google Scholar 

  48. Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, vol. 27. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  49. Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous Fluids, Applied Mathematical Sciences, vol. 96. Springer, New York (1994)

    Book  MATH  Google Scholar 

  50. Cheskidov, A., Constantin, P., Friedlander, S., Shvydkoy, R.: Energy conservation and Onsager’s conjecture for the Euler equations. Nonlinearity 21(6), 1233 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  51. Constantin, P., Weinan, E., Titi, E.S.: Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Commun. Math. Phys. 165(1), 207 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  52. Eyink, G.L.: Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local energy transfer. Phys. D 78(3–4), 222 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  53. Eyink, G.L., Sreenivasan, K.R.: Onsager and the theory of hydrodynamic turbulence. Rev. Mod. Phys. 78(1), 87 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  54. Onsager, L.: Statistical hydrodynamics. Nuovo Cimento (9) 6(Supplemento, 2(Convegno Internazionale di Meccanica Statistica)), 279 (1949)

  55. Bardos, C., Titi, E.S.: Loss of smoothness and energy conserving rough weak solutions for the \(3d\) Euler equations. Discrete Contin. Dyn. Syst. Ser. S 3(2), 185 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  56. Buckmaster, T., De Lellis, C., Isett, P., Székelyhidi Jr., L.: Anomalous dissipation for \(1/5\)-Hölder Euler flows. Ann. Math. (2) 182(1), 127 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  57. Buckmaster, T.: Onsager’s conjecture almost everywhere in time. Commun. Math. Phys. 333(3), 1175 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  58. De Lellis, C., Székelyhidi Jr., L.: On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195(1), 225 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  59. De Lellis, C., Székelyhidi Jr., L.: Dissipative continuous Euler flows. Invent. Math. 193(2), 377 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  60. De Lellis, C., Székelyhidi Jr., L.: Dissipative Euler flows and Onsager’s conjecture. J. Eur. Math. Soc. (JEMS) 16(7), 1467 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  61. Isett, P.: Hölder continuous Euler flows with compact support in time, ProQuest LLC, Ann Arbor, MI pp. 1–227 (2012). Thesis (Ph.D.)–Princeton University. (arXiv:1211.4065)

  62. Chorin, A.J.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 745 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  63. Temam, R.: Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires. I. Arch. Ration. Mech. Anal. 32, 135 (1969)

    Article  MATH  Google Scholar 

  64. Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. Ser. A 272(1220), 47 (1972)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of E.S.T. was supported in part by ONR Grant Number N00014-15-1-2333, and by the NSF Grants Number DMS-1109640 and DMS-1109645.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Larios.

Additional information

Communicated by Oleg V. Vasilyev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larios, A., Petersen, M.R., Titi, E.S. et al. A computational investigation of the finite-time blow-up of the 3D incompressible Euler equations based on the Voigt regularization. Theor. Comput. Fluid Dyn. 32, 23–34 (2018). https://doi.org/10.1007/s00162-017-0434-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-017-0434-0

Keywords

Mathematics Subject Classification 

Navigation