Skip to main content
Log in

Asymptotic solutions of the axisymmetric moist Hadley circulation in a model with two vertical modes

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

A simplified model of the moist axisymmetric Hadley circulation is examined in the asymptotic limit in which surface drag is strong and the meridional wind is weak compared to the zonal wind. Our model consists of the quasi-equilibrium tropical circulation model (QTCM) equations on an axisymmetric aquaplanet equatorial beta-plane. This model includes two vertical momentum modes, one baroclinic and one barotropic. Prior studies use either continuous stratification, or a shallow water system best viewed as representing the upper troposphere. The analysis here focuses on the interaction of the baroclinic and barotropic modes, and the way in which this interaction allows the constraints on the circulation known from the fully stratified case to be satisfied in an approximate way. The dry equations, with temperature forced by Newtonian relaxation towards a prescribed radiative equilibrium, are solved first. To leading order, the resulting circulation has a zonal wind profile corresponding to uniform angular momentum at a level near the tropopause, and zero zonal surface wind, owing to the cancelation of the barotropic and baroclinic modes there. The weak surface winds are calculated from the first-order corrections. The broad features of these solutions are similar to those obtained in previous studies of the dry Hadley circulation. The moist equations are solved next, with a fixed sea surface temperature at the lower boundary and simple parameterizations of surface fluxes, deep convection, and radiative transfer. The solutions yield the structure of the barotropic and baroclinic winds, as well as the temperature and moisture fields. In addition, we derive expressions for the width and strength of the equatorial precipitating region (ITCZ) and the width of the entire Hadley circulation. The ITCZ width is on the order of a few degrees in the absence of any horizontal diffusion and is relatively insensitive to parameter variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bretherton C.S., Sobel A.H. (2002) A simple model of a convectively-coupled Walker circulation using the weak temperature gradient approximation. J. Climate 15, 2907–2920

    Article  ADS  Google Scholar 

  2. Burns, S.P., Sobel, A.H. Radiative feedbacks in idealized, axisymmetric simulations of the moist hadley circulation. J. Atmos. Sci. (submitted) (2006)

  3. Fang I.M., Tung K.K. (1999) Time-dependent nonlinear hadley circulation. J. Atmos. Sci. 56(12): 1797–1807

    Article  ADS  Google Scholar 

  4. Fang I.M., Tung K.K. (1997) The dependence of the Hadley circulation on the thermal relaxation time. J. Atmos. Sci. 53(9): 1241–1261

    Article  ADS  Google Scholar 

  5. Fang I.M., Tung, K.K. A simple model of nonlinear hadley circulation with an ITCZ: analytic and numerical solutions. J. Atmos. Sci. 54 (10): 1379–1384; 53 (9): 1241–1261 (1996)

    Google Scholar 

  6. Gill A.E. (1980) Some simple solutions for heat-induced tropical circulaton. Q. J. R. Meteor. Soc. 106, 447–462

    Article  ADS  Google Scholar 

  7. Held I.M., Hou A.Y. (1980) Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci. 37, 515–533

    Article  MathSciNet  ADS  Google Scholar 

  8. Held I.M., Phillips P.J. (1990) A barotropic model of the interaction between the Hadley Cell and a Rossby wave. J. Atmos. Sci. 47, 856–869

    Article  ADS  Google Scholar 

  9. Hsu C.J., Plumb R.A. (2000) Nonaxisymmetric thermally driven circulations and upper-tropospheric monsoon dynamics. J. Atmos. Sci. 57(9): 1255–1276

    Article  ADS  Google Scholar 

  10. Kirtman B.P., Schneider E.K. (2000) A spontaneously generated atmospheric general circulation. J. Atmos. Sci. 57(13): 2080–2093

    Article  ADS  Google Scholar 

  11. Lindzen R.S., Hou A.Y. (1988) Hadley circulations for zonally averaged heating centered off the equator. J. Atmos. Sci. 45, 2416–2427

    Article  ADS  Google Scholar 

  12. Matsuno T. (1966) Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Jpn. 44, 25–43

    Google Scholar 

  13. Neelin J.D., Zeng N. (2000) A quasi-equilibrium tropical circulation model-formulation. J. Atmos. Sci. 57, 1741–1766

    Article  ADS  Google Scholar 

  14. Numaguti A. (1995) Dynamics and energy balance of the hadley circulation and the tropical precipitation zones. part II: sensitivity to meridional SST distribution. J. Atmos. Sci. 52(8): 1128–1141

    Article  ADS  Google Scholar 

  15. Numaguti A. (1993) Dynamics and energy balance of the hadley circulation and the tropical precipitation zones: significance of the distribution of evaporation. J. Atmos. Sci. 50(13): 1874–1887

    Article  ADS  Google Scholar 

  16. Polvani L.M., Sobel A. (2002) The Hadley circulation and the weak temperature gradient approximation. J. Atmos. Sci. 59, 1744–1752

    Article  MathSciNet  ADS  Google Scholar 

  17. Satoh M. (1994) Hadley circulations in radiative-ûective equilibrium in an axially symmetric atmosphere. J. Atmos. Sci. 51(13): 1947–1968

    Article  ADS  Google Scholar 

  18. Schneider E.K., Lindzen R.S. (1977) Axially symmetric steady-state models of the basic state for instability and climate studies. Part 1. linearized calculations. J. Atmos. Sci. 34(2): 263–279

    Article  ADS  Google Scholar 

  19. Schneider E.K. (1977) Axially symmetric steady-state models of the basic state for instability and climate studies. Part 2. nonlinear calculations. J. Atmos. Sci. 34(2): 280–296

    Article  ADS  Google Scholar 

  20. Schneider E.K. (1983) Martian great dust storms: interpretative axially symmetric models. ICARUS 55, 302–331

    Article  ADS  Google Scholar 

  21. Schneider E.K. (1987) A simplified model of the modified Hadley circulation. J. Atmos. Sci. 44, 3311–3328

    Article  ADS  Google Scholar 

  22. Sobel A.H., Bretherton C.S. (2003) Large-scale waves interacting with deep convection in idealized mesoscale model simulations. Tellus 55A, 45–60

    ADS  Google Scholar 

  23. Sobel A.H. (2002) Water vapor as an active scalar in tropical atmospheric dynamics. Chaos 12, 451–459

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Sobel A.H., Nilsson J., Polvani L. (2001) The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci. 58, 3650–3665

    Article  ADS  Google Scholar 

  25. Walker C.C., Schneider T. (2005) Response of idealized Hadley circulations to seasonally varying heating. Geophys. Res. Lett. 32, L06813

    Article  Google Scholar 

  26. Yu J.Y., Neelin J.D. (1997) Analytic approximations for moist convectively adjusted regions. J. Atmos. Sci. 54, 1054–1063

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel P. Burns.

Additional information

Communicated by R. Klein

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burns, S.P., Sobel, A.H. & Polvani, L.M. Asymptotic solutions of the axisymmetric moist Hadley circulation in a model with two vertical modes. Theor. Comput. Fluid Dyn. 20, 443–467 (2006). https://doi.org/10.1007/s00162-006-0024-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-006-0024-z

Keywords

Pacs

Navigation