Skip to main content
Log in

A multi-scale model for the intraseasonal impact of the diurnal cycle of tropical convection

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

One of the crucial features of tropical convection is the observed variability on multiple spatiotemporal scales, ranging from cumulus clouds on the daily time scale over a few kilometers to intraseasonal oscillations over planetary scales. The diurnal cycle of tropical convection is a significant process, but its large-scale impact is not well understood. Here, we develop a multi-scale analytic model to assess the intraseasonal impact of planetary-scale inertial oscillations in the diurnal cycle. A self-contained derivation of a multi-scale model governing planetary-scale tropical flows on the daily and intraseasonal time scale is provided below, by following the derivation of systematic multi-scale models for tropical convection. This derivation demonstrates the analytic tractability of the model. The appeal of the multi-scale model developed here is that it provides assessment of eddy flux divergences of momentum and temperature and their intraseasonal impact on the planetary-scale circulation in a transparent fashion. Here, we use it to study the intraseasonal impact of a model for the diurnal cycle heating with two local phase-lagged baroclinic modes with the congestus, deep, stratiform life cycle. The results show that during boreal summer, the eddy flux divergence of temperature dominates in the northern hemisphere, providing significant heating in the middle troposphere of the northern hemisphere with large-scale ascent and cooling with subsidence surrounding this heating center. Due to the analytic tractability of the model, such significant eddy flux divergence of temperature is traced to meridional asymmetry of the diurnal cycle heating. In an ideal zonally symmetric case, the resulting planetary-scale circulation on the intraseasonal time scale during boreal summer is characterized by ascent in the northern hemisphere, southward motion in the upper troposphere, descent around the equator and northward motion in the lower troposphere. The intraseasonal impact of the diurnal cycle on the planetary scale also includes negative potential temperature anomalies in the lower troposphere, which suggests convective triggering in the tropics. Furthermore, a fully coupled model for the intraseasonal impact of the diurnal cycle on the Hadley cell shows that the overturning motion induced by the eddy flux divergences of momentum and temperature from the diurnal cycle can strengthen the upper branch of the winter cell of the Hadley circulation, but weaken the lower branch of the winter cell. The corresponding eddy fluxes from the diurnal cycle are very weak for the equinox case with symmetric meridional profiles, and eddy momentum fluxes are small for all scenarios considered here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albright M.D., Mock D.R., Recker E.E., Reed R.J.: A diagnostic study of the diurnal rainfall variation in the GATE B-scale area. J. Atmos. Sci. 38, 1429–1445 (1981)

    Article  Google Scholar 

  2. Benedict J.J., Randall D.A.: Impacts of idealized air–sea coupling on Madden–Julian oscillation structure in the superparameterized CAM. J. Atmos. Sci. 68, 1990–2008 (2011)

    Article  Google Scholar 

  3. Biello J.A., Majda A.J.: A new multiscale model for the Madden–Julian oscillation. J. Atmos. Sci. 62, 1694–1721 (2005)

    Article  MathSciNet  Google Scholar 

  4. Biello J.A., Majda A.J.: Modulating synoptic scale convective activity and boundary layer dissipation in the IPESD models of the Madden–Julian oscillation. Dyn. Atmos. Ocean. 42, 152–215 (2006)

    Article  Google Scholar 

  5. Biello J.A., Majda A.J.: Intraseasonal multi-scale moist dynamics of the tropical atmosphere. Commun. Math. Sci. 8, 519–540 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dai A., Trenberth K.E.: The diurnal cycle and its depiction in the community climate system model. J. Clim. 17, 930–951 (2004)

    Article  Google Scholar 

  7. Frenkel Y., Khouider B., Majda A.J.: Simple multicloud models for the diurnal cycle of tropical precipitation. Part I: formulation and the case of the tropical oceans. J. Atmos. Sci. 68, 2169–2190 (2011)

    Article  Google Scholar 

  8. Frenkel Y., Khouider B., Majda A.J.: Simple multicloud models for the diurnal cycle of tropical precipitation. Part II: the continental regime. J. Atmos. Sci. 68, 2192–2207 (2011)

    Article  Google Scholar 

  9. Frenkel Y., Majda A.J., Khouider B.: Simple models for the diurnal cycle and convectively coupled waves. Theor. Comput. Fluid Dyn. 27, 533–559 (2013)

    Article  Google Scholar 

  10. Haertel P.T., Kiladis G.N.: Dynamics of 2-day equatorial waves. J. Atmos. Sci. 61, 2707–2721 (2004)

    Article  Google Scholar 

  11. Hendon H.H., Liebmann B.: Organization of convection within the Madden-Julian oscillation. J. Geophys. Res.: Atmos. (1984–2012) 99, 8073–8083 (1994)

    Article  Google Scholar 

  12. Holton J.R., Hakim G.J.: An Introduction to Dynamic Meteorology. Academic Press, London (2012)

    Google Scholar 

  13. Houze R.A., Betts A.K.: Convection in GATE. Rev. Geophys. 19, 541–576 (1981)

    Article  Google Scholar 

  14. Johnson R.H., Rickenbach T.M., Rutledge S.A., Ciesielski P.E., Schubert W.H.: Trimodal characteristics of tropical convection. J. Clim. 12, 2397–2418 (1999)

    Article  Google Scholar 

  15. Khairoutdinov M., Randall D., DeMott C.: Simulations of the atmospheric general circulation using a cloud-resolving model as a superparameterization of physical processes. J. Atmos. Sci. 62, 2136–2154 (2005)

    Article  Google Scholar 

  16. Khouider B., Majda A.J.: Model multi-cloud parameterizations for convectively coupled waves: detailed nonlinear wave evolution. Dyn. Atmos. Ocean. 42, 59–80 (2006)

    Article  Google Scholar 

  17. Khouider B., Majda A.J.: Multicloud convective parameterizations with crude vertical structure. Theor. Comput. Fluid Dyn. 20, 351–375 (2006)

    Article  Google Scholar 

  18. Khouider B., Majda A.J.: A simple multicloud parameterization for convectively coupled tropical waves. Part I: linear analysis. J. Atmos. Sci. 63, 1308–1323 (2006)

    Article  MathSciNet  Google Scholar 

  19. Kikuchi K., Wang B.: Diurnal precipitation regimes in the global tropics. J. Clim. 21, 2680–2696 (2008)

    Article  Google Scholar 

  20. Lin J.-L., Zhang M., Mapes B.: Zonal momentum budget of the Madden–Julian oscillation: the source and strength of equivalent linear damping. J. Atmos. Sci. 62, 2172–2188 (2005)

    Article  Google Scholar 

  21. Lin X., Johnson R.H.: Kinematic and thermodynamic characteristics of the flow over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci. 53, 695–715 (1996)

    Article  Google Scholar 

  22. Majda, A.J.: Introduction to PDEs and waves for the atmosphere and ocean. In: Courant lecture notes in mathematics, vol 9. American Mathematical Society, New York (2003)

  23. Majda A.J.: New multiscale models and self-similarity in tropical convection. J. Atmos. Sci. 64, 1393–1404 (2007)

    Article  Google Scholar 

  24. Majda A.J., Biello J.A.: A multiscale model for tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA 101, 4736–4741 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Majda A.J., Klein R.: Systematic multiscale models for the Tropics. J. Atmos. Sci. 60, 393–408 (2003)

    Article  Google Scholar 

  26. Mapes B., Tulich S., Lin J., Zuidema P.: The mesoscale convection life cycle: building block or prototype for large-scale tropical waves. Dyn. Atmos. Ocean. 42, 3–29 (2006)

    Article  Google Scholar 

  27. McGarry M.M., Reed R.J.: Diurnal variations in convective activity and precipitation during phases II and III of GATE. Mon. Weather Rev. 106, 101–113 (1978)

    Article  Google Scholar 

  28. Nakazawa T.: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteorol. Soc. Jpn. 66, 823–839 (1988)

    Google Scholar 

  29. Nesbitt S.W., Zipser E.J.: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Clim. 16, 1456–1475 (2003)

    Article  Google Scholar 

  30. Randall D.A., Dazlich D.A.: Diurnal variability of the hydrologic cycle in a general circulation model. J. Atmos. Sci. 48, 40–62 (1991)

    Article  Google Scholar 

  31. Ray C.L.: Diurnal variation of rainfall at San Juan, pr 1. Mon. Weather Rev. 56, 140–141 (1928)

    Article  Google Scholar 

  32. Romps D.M.: Rayleigh damping in the free troposphere. J. Atmos. Sci. 71, 553–565 (2014)

    Article  Google Scholar 

  33. Sato T., Miura H., Satoh M., Takayabu Y.N., Wang Y.: Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. J. Clim. 22, 4809–4826 (2009)

    Article  Google Scholar 

  34. Sorooshian S., Gao X., Hsu K., Maddox R.A., Hong Y., Gupta H.V., Imam B.: Diurnal variability of tropical rainfall retrieved from combined GOES and TRMM satellite information. J. Clim. 15, 983–1001 (2002)

    Article  Google Scholar 

  35. Sperber K.R., Slingo J.M., Inness P.M., Lau W.K-M.: On the maintenance and initiation of the intraseasonal oscillation in the NCEP/NCAR reanalysis and in the GLA and UKMO AMIP simulations. Clim. Dyn. 13, 769–795 (1997)

    Article  Google Scholar 

  36. Takayabu Y.N.: Spectral representation of rain profiles and diurnal variations observed with TRMM PR over the equatorial area. Geophys. Res. Lett. 29, 25–1 (2002)

  37. Tian B., Soden B.J., Wu X.: Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: satellites versus a general circulation model. J. Geophys. Res.: Atmos. (1984–2012) 109, D10101 (2004)

    Article  Google Scholar 

  38. Wheeler M., Kiladis G.N.: Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci. 56, 374–399 (1999)

    Article  Google Scholar 

  39. Yang G.-Y., Slingo J.: The diurnal cycle in the tropics. Mon. Weather Rev. 129, 784–801 (2001)

    Article  Google Scholar 

  40. Yang S., Smith E.A.: Mechanisms for diurnal variability of global tropical rainfall observed from TRMM. J. Clim. 19, 5190–5226 (2006)

    Article  Google Scholar 

  41. Yanai M., Chen B., Tung W.: The Madden-Julian oscillation observed during the TOGA COARE IOP: global view. J. Atmos. Sci. 57, 2374–2396 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiu Yang.

Additional information

Communicated by Tim Colonius.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Majda, A.J. A multi-scale model for the intraseasonal impact of the diurnal cycle of tropical convection. Theor. Comput. Fluid Dyn. 28, 605–633 (2014). https://doi.org/10.1007/s00162-014-0336-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-014-0336-3

Keywords

Navigation