Skip to main content
Log in

Level set topology optimization of problems with sliding contact interfaces

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper introduces a topology optimization method for the design of two-component structures and two-phase material systems considering sliding contact and separation along interfaces. The geometry of the contact interface is described by an explicit level set method which allows for both shape and topological changes in the optimization process. The mechanical model assumes infinitesimal strains, a linear elastic material behavior, and a quasi-static response. The contact conditions are enforced by a stabilized Lagrange multiplier method and an active set strategy. The mechanical model is discretized by the extended finite element method which retains the crispness of the level set geometry description and allows for the convenient integration of the weak form of the contact conditions at the phase boundaries. The formulation of the optimization problem is regularized by introducing a perimeter penalty into the objective function. The optimization problem is solved by a nonlinear programming scheme computing the design sensitivities by the adjoint method. The main characteristics of the proposed method are studied by numerical examples in two dimensions. Consideration of contact leads to the formation of barb-type features that increase the interface stiffness. The numerical results further demonstrate the significant difference in the optimized geometries when assuming perfect bonding versus considering contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393. doi:10.1016/j.jcp.2003.09.032

    Article  MathSciNet  MATH  Google Scholar 

  • Amdouni S, Hild P, Lleras V, Moakher M, Renard Y (2012) A stabilised lagrange multiplier method for the enriched finite-element approximation of contact problems of cracked elastic bodies. ESAIM: Math Modell Numer Anal 46:813–839

    Article  MathSciNet  MATH  Google Scholar 

  • Andrade-Campos A, Ramos A, Simões J (2012) A model of bone adaptation as a topology optimization process with contact. J Biomed Sci Eng 5:229–244

    Article  Google Scholar 

  • Annavarapu C, Hautefeuille M, Dolbow JE (2014) A nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part I: Single interface. Comput Methods Appl Mech Eng 268:417–436

    Article  MathSciNet  MATH  Google Scholar 

  • Antunez H, Kleiber M (1996) Sensitivity analysis of metal forming process involving frictional contact in steady state. Mater Process Technol 60(1–4):485–491

    Article  Google Scholar 

  • Bendsøe M (1989) Optimal shape design as a material distribution problem. Struct Multidiscip Optim 1(4):193–202. doi:10.1007/BF01650949

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer

  • Biotteau E, Ponthot JP (2012) Modeling frictional contact conditions with the penalty method in the extended finite element framework. In: European congress on computational methods in applied sciences and engineering

  • Burman E, Hansbo P (2012) Fictitious domain finite element methods using cut elements: II. A stabilized nitsche method. Appl Numer Math 62(4):328–341

    Article  MathSciNet  MATH  Google Scholar 

  • Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38. doi:10.1007/s00158-013-0956-z

    Article  MathSciNet  Google Scholar 

  • van Dijk N, Maute K, Langelaar M, Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim:1–36. doi:10.1007/s00158-013-0912-y

  • Fries TP, Belytschko T (2006) The intrinsic xfem: a method for arbitrary discontinuities without additional unkowns. Int J Numer Methods Eng 68:1358–1385. doi:10.1002/nme.1761

    Article  MATH  Google Scholar 

  • Geniaut S, Massin P, Möes N (2007) A stable 3D contact formulation using X-FEM. REMN 16:259–275

    MATH  Google Scholar 

  • Giner E, Tur M, Tarancon JE, Fuenmayor FJ (2010) Crack face contact in X-FEM using a segment-to-segment approach. Int J Numer Methods Eng 82:1424–1449

    MathSciNet  MATH  Google Scholar 

  • Hammer V, Olhoff N (2000) Topology optimization of continuum structures subjected to pressure loading. Struct Multidisc Optim 19:85–92

    Article  Google Scholar 

  • Khoei AR (2015) Extended finite element method: theory and applications. Wiley

  • Kikuchi N, Chen BC (2001) Topology optimization with design-dependent loads. Finite Elements Anal Des 37(1):57–70

    Article  MathSciNet  MATH  Google Scholar 

  • Kim N, Park Y, Choi K (2001) Optimization of a hyperelastic structure with multibody contact using continuum-based shape design sensitivity analysis. Struct Optim 21 (3):196–208

    Article  Google Scholar 

  • Kim NH, Yi K, Choi KK (2002) A material derivative approach in design sensitivity analysis of three-dimensional contact problems. Int J Solids Struct 39(8):2087–2108

    Article  MATH  Google Scholar 

  • Kreissl S, Maute K (2012) Levelset based fluid topology optimization using the extended finite element method. Struct Multidiscip Optim:1–16

  • Lang C, Makhija D, Doostan A, Maute K (2014) A simple and efficient preconditioning scheme for XFEM with heaviside enrichments. Comput Mech 54(5):1357–1374. doi:10.1007/s00466-014-1063-8

    Article  MathSciNet  MATH  Google Scholar 

  • Liu F, Borja R (2008) A contact algorithm for frictional crack propagation with the extended finite element method. Int J Numer Methods Eng 76:1489–1512

    Article  MathSciNet  MATH  Google Scholar 

  • Liu F, Borja RI (2010) Stabilized low-order finite elements for frictional contact with the extended finite element method. Comput Methods Appl Mech Eng 199:2456–2471

    Article  MathSciNet  MATH  Google Scholar 

  • Makhija D, Maute K (2014) Numerical instabilities in level set topology optimization with the extended finite element method. Struct Multidiscip Optim 49(2):185–197

    Article  MathSciNet  Google Scholar 

  • Mueller-Hoeppe DS, Wriggers P, Loehnert S (2012) Crack face contact for hexahedral-based XFEM formulation. Comput Mech 49:725–734

    Article  MathSciNet  MATH  Google Scholar 

  • Myśliński A (2009) Level set method for shape and topology optimization of contact problems. In: Korytowski A, Malanowski K, Mitkowski W, Szymkat M (eds) System modeling and optimization. IFIP advances in information and communication technology, vol 312. Springer, Berlin, pp 397–410

  • Myśliński A (2013) Phase field approach to topology optimization of contact problems. In: Haftka R (ed) Proceedings of the 10th World congress on structural and multidisciplinary optimization, ISSMO, paper 233

  • Myśliński A (2014) Sharp interface approach in topology optimization of contact problems. In: Nate E O, Oliver J, Huerta A (eds) 11th World congress on computational mechanics, Barcelona

  • Myśliński A (2015) Piecewise constant level set method for topology optimization of unilateral contact problems. Adv Eng Softw 80:25–32

    Article  Google Scholar 

  • Nistor I, Guiton MLE, Massin P, Moës N, Géniaut S (2009) An X-FEM approach for large sliding contact along discontinuities. Int J Numer Methods Eng 78:1407–1435

    Article  MATH  Google Scholar 

  • Rozvany G, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Multidiscip Optim 4 (3):250–252

    Article  Google Scholar 

  • Siavelis M, Massin P, Guiton MLE, Mazet S, Möes N (2010) Robust implementation of contact under friction and large sliding with the extended finite element method. Eur J Comput Mech 19 :189–203

    MATH  Google Scholar 

  • Sigmund O, Clausen P (2007) Topology optimization using a mixed formulation: An alternative way to solve pressure load problems. Comput Methods Appl Mech Eng 196(13–16):1874–1889. doi:10.1016/j.cma.2006.09.021

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Struct Multidiscip Optim 48(6):1031–1055

    Article  MathSciNet  Google Scholar 

  • Sokolowski J, Zochowski A (2005) Modelling of topological derivatives for contact problems. Numerische Mathematik 102(1):145–179

    Article  MathSciNet  MATH  Google Scholar 

  • Strömberg N (2009) The influence of sliding friction in optimal topologies. In: Stravroulakis G E (ed) Recent advances in contact mechanics, 5th contact mechanics international symposium (CMIS2009), vol 56. Springer, pp 327–336

  • Svanberg K (1995) A globally convergent version of MMA without linesearch. In: Proceedings of the first World congress of structural and multidisciplinary optimization, 28 May - 2 June 1995. Goslar, pp 9–16

  • Taheri Mousavi SMJ, Taheri Mousavi SM (2011) Modeling large sliding frictional contact along non-smooth discontinuities in X-FEM. Int J Model Optim 1:169–173

    Article  Google Scholar 

  • Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Methods Eng 58(9):1321–1346. doi:10.1002/nme.820

    Article  MATH  Google Scholar 

  • Tran AB, Yvonnet J, He QC, Toulemonde C, Sanahuja J (2011) A multiple level set approach to prevent numerical artefacts in complex microstructures with nearby inclusions within xfem. Int J Numer Methods Eng 85(11):1436–1459

    Article  MATH  Google Scholar 

  • Villanueva CH, Maute K (2014) Density and level set-XFEM schemes for topology optimization of 3-D structures. Comput Mech 54(1):133–150

    Article  MathSciNet  MATH  Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1-2):227–246. doi:10.1016/S0045-7825(02)00559-5

    Article  MATH  Google Scholar 

  • Wriggers P (2002) Computational contact mechanics. Wiley

  • Yoon GH (2010) Topology optimization for stationary fluid–structure interaction problems using a new monolithic formulation. Int J Numer Methods Eng 82(5):591–616

    MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the National Science Foundation under grant CMMI-1235532 and the Air Force Office of Scientific Research under contract FA9550-13-1-0088. This work utilized the Janus supercomputer, which is supported by the National Science Foundation (award number CNS-0821794) and the University of Colorado Boulder. The Janus supercomputer is a joint effort of the University of Colorado Boulder, the University of Colorado Denver and the National Center for Atmospheric Research. Janus is operated by the University of Colorado Boulder. The opinions and conclusions presented in this paper are those of the authors and do not necessarily reflect the views of the sponsoring organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Maute.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawry, M., Maute, K. Level set topology optimization of problems with sliding contact interfaces. Struct Multidisc Optim 52, 1107–1119 (2015). https://doi.org/10.1007/s00158-015-1301-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-015-1301-5

Keywords

Navigation