Skip to main content
Log in

Trace metal and sulfur cycling in a hydrothermally active arc volcano: deep-sea drilling of the Brothers volcano, Kermadec arc, New Zealand

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Brothers volcano, located on the Kermadec arc north of New Zealand, hosts two geochemically distinct hydrothermal systems. The NW Caldera and Upper Cone hydrothermal fields exhibit distinct fluid compositions that are significantly influenced by seawater and magmatic volatiles, respectively. In this study, we present trace metal chemistry and sulfur isotope compositions of pyrite within hydrothermally altered volcanic rocks recovered from drill cores at depths of up to 429 m below the seafloor collected during the International Ocean Discovery Program’s Expedition 376. Magmatic volatile-influenced alteration resulting in pyrophyllite ± natroalunite assemblages occurs at the Upper Cone and at the NW Caldera below 189 m. At the NW Caldera, a later seawater-derived hydrothermal fluid overprints magmatic volatile alteration forming chlorite-rich alteration. Pyrite at the Upper Cone is fine-grained, euhedral and enriched in Cu, As, Sb, Pb and Pt and has an average δ34S composition of − 5.5 ± 2.9‰ (1σ, n = 32). In contrast, pyrite associated with pyrophyllite-rich alteration at the older NW Caldera site is coarse-grained, subhedral and has higher Co, Se, Te, and Bi contents but a comparable average δ34S value of -4.8 ± 5.5‰ (1σ, n = 26). The difference in trace metal content between pyrite from pyrophyllite ± natroalunite assemblages at the NW Caldera and Upper Cone site indicates a change in the trace metal enrichment signature of pyrite with the age of the hydrothermal system. Pyrite from chlorite-rich alteration (NW Caldera) is depleted in Cu, Te and Bi relative to all magmatic volatile-influenced pyrite but has a similar average δ34S composition of − 4.6 ± 3.5‰ (1σ, n = 20). The similarity in trace metal enrichment signature and average δ34S composition of pyrite, regardless of associated alteration mineral assemblage shows that the initial magmatic volatile trace metal signature and sulfur isotope composition of pyrite is preserved during fluid overprinting. The lower content of Cu, Te, and Bi in pyrite from chlorite-rich alteration confirms the importance of seawater-derived hydrothermal fluids in metal mobilization and consequent formation of hydrothermal precipitates at the seafloor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abraitis PK, Pattrick RAD, Vaughan DJ (2004) Variations in the compositional, textural and electrical properties of natural pyrite: a review. Int J Miner Process 74:41–59

    Article  Google Scholar 

  • Baker ET, Walker SL, Embley RW, de Ronde CEJ (2012) High-resolution hydrothermal mapping of Brothers caldera, Kermadec Arc. Econ Geol 107:1583–1593

    Article  Google Scholar 

  • Banerjee NR, Gillis KM, Muehlenbachs K (2000) Discovery of epidosites in a modern oceanic setting, the Tonga forearc. Geology 28:151–154

    Article  Google Scholar 

  • Berkenbosch HA, de Ronde CEJ, Gemmell JB, McNeill AW, Goemann K (2012) Mineralogy and formation of black smoker chimneys from Brothers submarine volcano, Kermadec Arc. Econ Geol 107:1613–1633

    Article  Google Scholar 

  • Berkenbosch HA, de Ronde CEJ, Ryan CG, McNeill AW, Howard DL, Gemmell JB, Danyushevsky LV (2019) Trace element mapping of copper- and zinc-rich black smoker chimneys from Brothers Volcano, Kermadec Arc, Using Synchrotron Radiation XFM and LA-ICP-MS. Econ Geol 114:67–92

    Article  Google Scholar 

  • Wysoczanski RJ, Handler MR, Schipper CI, Leybourne MI, Creech J, Rotella MD, Nichols ARL, Wilson CJN, Stewart RB (2012) The tectonomagmatic source of ore metals and volatile elements in the southern Kermadec Arc. Econ Geol 107:1539–1556

    Article  Google Scholar 

  • Binns RA, Barriga FJAS, Miller DJ, et al. (2002) in Binns RA. et al. eds., Initial report summary, Leg 193 Proceedings of the International Ocean Discovery Program: College Station, Texas, International Ocean Discovery Program, pp. 84

  • Brueckner SM, Piercey SJ, Layne GD, Piercey G, Sylvester PJ (2015) Variations of sulphur isotope signatures in sulphides from the metamorphosed Ming Cu(−Au) volcanogenic massive sulphide deposit, Newfoundland Appalachians, Canada. Miner Deposita 50:619–640

    Article  Google Scholar 

  • Butler IB, Nesbitt RW (1999) Trace element distributions in the chalcopyrite wall of a black smoker chimney: insights from laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS). Earth Planet Sci Lett 167:335–345

    Article  Google Scholar 

  • Butterfield DA, Nakamura K, Takano B, Lilley MD, Lupton JE, Resing JA, Roe KK (2011) High SO2 flux, sulfur accumulation, and gas fractionation at an erupting submarine volcano. Geology 39:803–806

    Article  Google Scholar 

  • Caratori Tontini F, de Ronde CEJ, Yoerger D, Kinsey J, Tivey M (2012) 3-D focused inversion of near-seafloor magnetic data with application to the Brothers volcano hydrothermal system, Southern Pacific Ocean, New Zealand. J Geophys Res Solid Earth 117:B10102

    Article  Google Scholar 

  • Caratori Tontini F, Tivey MA, de Ronde CEJ, Humphris SE (2019) Heat flow and near-seafloor magnetic anomalies highlight hydrothermal circulation at Brothers volcano caldera, Southern Kermadec Arc, New Zealand. Geophys Res Lett 46:8252–8260

    Article  Google Scholar 

  • Cook NJ, Ciobanu CL, Pring A, Skinner W, Shimizu M, Danyushevsky L, Saini-Eidukat B, Melcher F (2009) Trace and minor elements in sphalerite: a LA-ICPMS study. Geochim Cosmochim Acta 73:4761–4791

    Article  Google Scholar 

  • de Ronde CEJ, Faure K, Bray CJ, Chappell DA, Wright IC (2003) Hydrothermal fluids associated with seafloor mineralization at two southern Kermadec arc volcanoes, offshore New Zealand. Miner Deposita 38:217–233

    Article  Google Scholar 

  • de Ronde CEJ, Hannington MD, Stoffers P, Wright IC, Ditchburn RG, Reyes AG, Baker ET, Massoth GJ, Lupton JE, Walker SL, Greene RR, Soong CWR, Ishibashi J, Lebon GT, Bray CJ, Resing JA (2005) Evolution of a submarine magmatic-hydrothermal system: Brothers Volcano, Southern Kermadec Arc, New Zealand. Econ Geol 100:1097–1133

    Article  Google Scholar 

  • de Ronde CEJ, Massoth GJ, Butterfield DA, Christenson BW, Ishibashi J, Ditchburn RG, Hannington MD, Brathwaite RL, Lupton JE, Kamenetsky VS, Graham IJ, Zellmer GF, Dziak RP, Embley RW, Dekov VM, Munnik F, Lahr J, Evans LJ, Takai K (2011) Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand. Miner Deposita 46:541–584

    Article  Google Scholar 

  • de Ronde CEJ, Butterfield DA, Leybourne MI (2012) Metallogenesis and mineralization of intraoceanic arcs I: Kermadec arc—introduction. Econ Geol 107(8):1521–1525

    Article  Google Scholar 

  • de Ronde CEJ, Chadwick WW, Ditchburn RG, Embley RW, Tunnicliffe V, Baker ET, Walker SL, Ferrini VL, Merle SM (2015) Molten sulfur lakes of intraoceanic arc volcanoes. In: Rouwet D, Christenson B, Tassi F, Vandemeulebrouck J (eds) Volcanic Lakes, Advances in Volcanology. Springer, Berlin, Heidelberg, pp 261–288

    Chapter  Google Scholar 

  • Yang K, Scott SD (1996) Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system. Nature 383:420–423

    Article  Google Scholar 

  • Yang K, Scott SD (2002) Magmatic degassing of volatiles and ore metals into a hydrothermal system on the modern sea floor of the eastern Manus back-arc basin, Western Pacific. Econ Geol 97:1079–1100

    Article  Google Scholar 

  • de Ronde CEJ, Humphris SE, Höfig TW, Reyes AG (2019) Critical role of caldera collapse in the formation of seafloor mineralization: the case of Brothers volcano. Geology 47:762–766

    Article  Google Scholar 

  • de Ronde CEJ, Humphris SE, Höfig TW, and the Expedition 376 Scientists (2019b) Site U1528, in de Ronde CEJ, et al. (ed.), Brothers arc flux: Proceedings of the International Ocean Discovery Program, Volume 376: College Station, Texas, International Ocean Discovery Program, 66 p.

  • Deditius AP, Utsunomiya S, Reich M, Kesler SE, Ewing RC, Hough R, Walshe J (2011) Trace metal nanoparticles in pyrite. Ore Geol Rev 42:32–46

    Article  Google Scholar 

  • Deditius AP, Reich M, Kesler SE, Utsunomiya S, Chryssoulis SL, Walshe J, Ewing RC (2014) The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochim Cosmochim Acta 140:644–670

    Article  Google Scholar 

  • Diehl A, de Ronde CEJ (2020) Bach W (2020) Subcritical phase separation and occurrence of deep-seated brines at the NW Caldera Vent Field, Brothers Volcano: evidence from fluid inclusions in hydrothermal precipitates. Geofluids 1:22. https://doi.org/10.1155/2020/8868259

    Article  Google Scholar 

  • Ditchburn RG, de Ronde CEJ (2017) Evidence for remobilization of barite affecting radiometric dating using 228Ra, 228Th, and 226Ra/Ba values: implications for the evolution of sea-floor volcanogenic massive sulfides. Econ Geol 112:1231–1245

    Article  Google Scholar 

  • Edmonds M, Wallace PJ (2017) Volatiles and exsolved vapor in volcanic systems. Elements 13:29–34

    Article  Google Scholar 

  • Yeats CJ, Parr JM, Binns RA, Gemmell JB, Scott SD (2014) The SuSu Knolls hydrothermal field, eastern Manus basin, Papua New Guinea: an active submarine high-sulfidation copper-gold system. Econ Geol 109:2207–2226

    Article  Google Scholar 

  • Edmonds HN, German CR, Green DRH, Huh Y, Gamo T, Edmond JM (1996) Continuation of the hydrothermal fluid chemistry time series at TAG, and the effects of ODP drilling. Geophys Resh Lett 23:3487–3489

    Article  Google Scholar 

  • Embley RW, de Ronde CEJ, Merle SG, Davy B, Caratori Tontini F (2012) detailed morphology and structure of an active submarine arc caldera: Brothers Volcano, Kermadec Arc. Econ Geol 107:1557–1570

    Article  Google Scholar 

  • Fouquet Y, Zierenberg RA, Miller DJ and Leg 169 Scientists (1998). , Fouquet et al. (ed.), Initial reports of the Ocean Drilling Program, Leg 169: College Station, Texas, Ocean Drilling Program, p. 205–252

  • Fuchs S, Hannington MD, Petersen S (2019) Divining gold in seafloor polymetallic massive sulfide systems. Miner Deposita 54:789–820

    Article  Google Scholar 

  • Gemmell JB, Sharpe R, Jonasson IR, Herzig PM (2004) Sulfur isotope evidence for magmatic contributions to submarine and subaerial gold mineralization: conical seamount and the Ladolam Gold Deposit, Papua New Guinea. Econ Geol 99:1711–1725

    Article  Google Scholar 

  • George LL, Cook NJ, Ciobanu CL (2016) Partitioning of trace elements in co-crystallized sphalerite–galena–chalcopyrite hydrothermal ores. Ore Geol Rev 77:97–116

    Article  Google Scholar 

  • Giggenbach WF (1996) Chemical composition of volcanic gases. In: Scarpa R, Tilling RI (eds) Monitoring and mitigation of volcano hazards. Springer, Berlin, Heidelberg, pp 221–256

    Chapter  Google Scholar 

  • Goldschmidt VM, Muir A (1954) Geochemistry. Clarendon Press, Oxford, p 730

    Google Scholar 

  • Grant HLJ, Hannington MD, Petersen S, Frische M, Fuchs SH (2018) Constraints on the behavior of trace elements in the actively-forming TAG deposit, Mid-Atlantic Ridge, based on LA-ICP-MS analyses of pyrite. Chem Geol 498:45–71

    Article  Google Scholar 

  • Gruen G, Weis P, Driesner T, Heinrich CA, de Ronde CEJ (2014) Hydrologic controls on different styles of magmatic-hydrothermal activity with implications for ore deposit formation at submarine arc volcanoes. Earth Planet Sci Lett 404:307–318

    Article  Google Scholar 

  • Haase KM, Stroncik N, Garbe-Schönberg D, Stoffers P (2006) Formation of island arc dacite magmas by extreme crystal fractionation: an example from Brothers Seamount, Kermadec island arc (SW Pacific). J Volcanol Geotherm Res 152:316–330

    Article  Google Scholar 

  • Hannington MD, Tivey MK, Larocque ACL, Petersen S, Rona PA (1995) The occurrence of gold in sulfide deposits of the TAG hydrothermal field, Mid-Atlantic Ridge. Canad Mineral 33:1285–1310

    Google Scholar 

  • Hannington MD, de Ronde CEJ, Petersen S (2005) Sea-floor tectonics and submarine hydrothermal systems. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic Geology 100th Anniversary Volume. Society of Economic Geologists, Littelton, Colorado, USA, pp 111–141

    Google Scholar 

  • Hedenquist JW, Lowenstern JB (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature 370:519–527

    Article  Google Scholar 

  • Herzig PM, Hannington MD, Arribas A (1998) Sulfur isotopic composition of hydrothermal precipitates from the Lau back-arc: implications for magmatic contributions to seafloor hydrothermal systems. Miner Deposita 33:226–237

    Article  Google Scholar 

  • Zeng Z, Liu C, Chen CA, Yin X, Chen D, Wang XY, Wang X, Zhang G (2007) Origin of a native sulfur chimney in the Kueishantao hydrothermal field, offshore northeast Taiwan. Sci China Earth Sci 50:1746–1753

    Article  Google Scholar 

  • Humphris SE, Thompson G (1978) Trace element mobility during hydrothermal alteration of oceanic basalts. Geoch Cosmochim Acta 42:127–136

    Article  Google Scholar 

  • Humphris SE, Herzig PM, Miller DJ, Alt JC, Becker K, Brown D, Brügmann G, Chiba H, Fouquet Y, Gemmell JB, Guerin G, Hannington MD, Holm NG, Honnorez JJ, Iturrino GJ, Knott R, Ludwig R, Nakamura K, Petersen S, Reysenbach A-L, Rona PA, Smith AAS, Tivey MK, Zhao X (1995) The internal structure of an active sea-floor massive sulphide deposit. Nature 377:713–716

    Article  Google Scholar 

  • Humphris SE, Herzig P, Miller D (1996) Introduction and principal results, in Humphris SE, et al. (ed.) Proceeding of the Ocean Drilling Program Initial Reports, Volume 158: College Station, Texas, International Ocean Discovery Program, 14 p.

  • Huston DL, Sie SH, Suter GF, Cooke DR, Both RA (1995) Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part I, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II, Selenium levels in pyrite; comparison with delta 34 S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Econ Geol 90:1167–1196

    Article  Google Scholar 

  • Huston DL, Relvas JMRS, Gemmell JB, Drieberg S (2011) The role of granites in volcanic-hosted massive sulphide ore-forming systems: an assessment of magmatic–hydrothermal contributions. Miner Deposita 46:473–507

    Article  Google Scholar 

  • Keith M, Häckel F, Haase KM, Schwarz-Schampera U, Klemd R (2016) Trace element systematics of pyrite from submarine hydrothermal vents. Ore Geol Rev 72:728–745

    Article  Google Scholar 

  • Keith M, Haase KM, Klemd R, Smith DJ, Schwarz-Schampera U, Bach W (2018) Constraints on the source of Cu in a submarine magmatic-hydrothermal system, Brothers volcano, Kermadec island arc. Contrib Mineral Petrol 173–40:1–16

    Google Scholar 

  • Keith M, Smith DJ, Jenkin GRT, Holwell DA, Dye MD (2018) A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: insights into ore-forming processes. Ore Geol Rev 96:269–282

    Article  Google Scholar 

  • Kleint C, Bach W, Diehl A, Fröhberg N, Garbe-Schönberg D, Hartmann JF, de Ronde CEJ, Sander SG, Strauss H, Stucker VK, Thal J, Zitoun R, Koschinsky A (2019) Geochemical characterization of highly diverse hydrothermal fluids from volcanic vent systems of the Kermadec intraoceanic arc. Chem Geol 528:119289

    Article  Google Scholar 

  • Kusakabe M, Komoda Y, Takano B, Abiko T (2000) Sulfur isotopic effects in the disproportionation reaction of sulfur dioxide in hydrothermal fluids: implications for the δ34S variations of dissolved bisulfate and elemental sulfur from active crater lakes. J Volcanol Geotherm Res 97:287–307

    Article  Google Scholar 

  • Large RR (1992) Australian volcanic-hosted massive sulfide deposits: features, styles, and genetic models. Econ Geol 87:471–510

    Article  Google Scholar 

  • Large RR, Doyle M, Raymond O, Cooke D, Jones A, Heasman L (1996) Evaluation of the role of Cambrian granites in the genesis of world class VHMS deposits in Tasmania. Ore Geol Rev 10:215–230

    Article  Google Scholar 

  • Large RR, Danyushevsky L, Hollit C, Maslennikov V, Meffre S, Gilbert S, Bull S, Scott R, Emsbo P, Thomas H, Singh B, Foster J (2009) Gold and trace element zonation in pyrite using a laser imaging technique: implications for the timing of gold in orogenic and carlin-style sediment-hosted deposits. Econ Geol 104:635–668

    Article  Google Scholar 

  • Layton-Matthews D, Leybourne MI, Peter JM, Scott SD, Cousens B, Eglington BM (2013) Multiple sources of selenium in ancient seafloor hydrothermal systems: compositional and Se, S, and Pb isotopic evidence from volcanic-hosted and volcanic-sediment-hosted massive sulfide deposits of the Finlayson Lake District, Yukon, Canada. Geochim Cosmochim Acta 117:313–331

    Article  Google Scholar 

  • de Ronde CEJ, Humphris SE, Höfig TW, and the Expedition 376 Scientists (2019b) Site U1530, in de Ronde CEJ, et al. (ed.), Brothers arc flux: Proceedings of the International Ocean Discovery Program, Volume 376: College Station, Texas, International Ocean Discovery Program, 53 p.

  • Martin AJ, Keith M, Parvaz DB, McDonald I, Boyce AJ, McFall KA, Jenkin GRT, Strauss H, MacLeod CJ (2020) Effects of magmatic volatile influx in mafic VMS hydrothermal systems: evidence from the Troodos ophiolite. Cyprus Chem Geol 531:119325

    Article  Google Scholar 

  • Martin AJ, McDonald I, Jenkin GRT, McFall KA, Boyce AJ, Jamieson JW, MacLeod CJ (2021) A missing link between ancient and active mafic-hosted seafloor hydrothermal systems – magmatic volatile influx in the exceptionally preserved Mala VMS deposit, Troodos. Cyprus Chem Geol 567:120127

    Article  Google Scholar 

  • Martin AJ, Jamieson JW, de Ronde CEJ, Humphris SE, Roberts S, Macleod CJ, Cai Y, Zhang C, Schlicht LEM, Nozaki T (2022). Hydrothermal alteration within the Brothers submarine arc volcano, Kermadec arc, New Zealand. Econ Geol. https://doi.org/10.5382/econgeo.4962

  • Maslennikov VV, Maslennikova SP, Large RR, Danyushevsky LV (2009) Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). Econ Geol 104:1111–1141

    Article  Google Scholar 

  • McDermott JM, Ono S, Tivey MK, Seewald JS, Shanks WC, Solow AR (2015) Identification of sulfur sources and isotopic equilibria in submarine hot-springs using multiple sulfur isotopes. Geochim Cosmochim Acta 160:169–187

    Article  Google Scholar 

  • Melekestseva IY, Tret’yakov GA, Nimis P, Yuminov AM, Maslennikov VV, Maslennikova SP, Kotlyarov VA, Beltenev VE, Danyushevsky LV, Large RR (2014) Barite-rich massive sulfides from the Semenov-1 hydrothermal field (Mid-Atlantic Ridge, 13°30.87′ N): Evidence for phase separation and magmatic input. Mar Geol 349:37–54

    Article  Google Scholar 

  • Mercier-Langevin P, Dubé B, Hannington Davis MDDW, Lafrance B, Gosselin G (2007) The LaRonde Penna Au-rich volcanogenic massive sulfide deposit, Abitibi Greenstone Belt, Quebec: Part I. Geology and Geochronology Econ Geol 102:585–609

    Article  Google Scholar 

  • Mercier-Langevin P, Hannington MD, Dubé B, Bécu V (2011) The gold content of volcanogenic massive sulfide deposits. Miner Deposita 46:509–539

    Article  Google Scholar 

  • Mercier-Langevin P, McNicoll V, Allen RL, Blight JHS, Dubé B (2013) The Boliden gold-rich volcanogenic massive sulfide deposit, Skellefte district, Sweden: new U-Pb age constraints and implications at deposit and district scale. Miner Deposita 48:485–504

    Article  Google Scholar 

  • Metz S, Trefry JH (2000) Chemical and mineralogical influences on concentrations of trace metals in hydrothermal fluids. Geochim Cosmochim Acta 64:2267–2279

    Article  Google Scholar 

  • Monecke T, Petersen S, Hannington MD, Grant H, Samson I (2016) The minor element endowment of modern sea-floor massive sulfide deposits and comparison with deposits hosted in ancient volcanic successions. In: Verplanck PL, Hitzman MW (eds) Rare earth and critical elements in ore deposits. Society of Economic Geologists, Knoxville, Tenn., pp 245–306

    Google Scholar 

  • Nestmeyer M, Keith M, Haase KM, Klemd R, Voudouris P, Schwarz-Schampera U, Strauss H, Kati M, Magganas A (2021) Trace element signatures in pyrite and marcasite from shallow marine island arc-related hydrothermal vents, Calypso Vents, New Zealand, and Paleochori Bay. Greece Front Earth Sci 9:138

    Google Scholar 

  • Ohmoto H, Lasaga AC (1982) Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochim Cosmochim Acta 46:1727–1745

    Article  Google Scholar 

  • Ono S, Shanks WC, Rouxel OJ, Rumble D (2007) S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides. Geochim Cosmochim Acta 71:1170–1182

    Article  Google Scholar 

  • Takai K, Mottl MJ, Nielsen SH and the Expedition 331 Scientists (2011) Proceedings of the International Ocean Discovery Program, Volume 331: College Station, Texas, International Ocean Discovery Program, p. 39

  • Patten CGC, Pitcairn IK, Alt JC, Zack T, Lahaye Y, Teagle DAH, Markdahl K (2020) Metal fluxes during magmatic degassing in the oceanic crust: sulfide mineralisation at ODP site 786B, Izu-Bonin forearc. Mineral Deposita 55:469–489

    Article  Google Scholar 

  • Petersen S, Herzig PM, Hannington MD, Jonasson IR, Arribas A (2002) Submarine gold mineralization near Lihir Island, New Ireland Fore-Arc, Papua New Guinea. Econ Geol 97:1795–1813

    Article  Google Scholar 

  • Pokrovski GS, Borisova AY, Bychkov AY (2013) Speciation and transport of metals and metalloids in geological vapors. Rev Mineral Geochem 76(1):165–218

  • Prichard HM, Knight RD, Fisher PC, McDonald I, Zhou MF, Wang CY (2013) Distribution of platinum-group elements in magmatic and altered ores in the Jinchuan intrusion, China: an example of selenium remobilization by postmagmatic fluids. Miner Deposita 48:767–786

    Article  Google Scholar 

  • Rahm M, Hoffmann R, Ashcroft NW (2016) Atomic and ionic radii of elements 1–96. Chem Eur J 22:14625–14632

    Article  Google Scholar 

  • Rees CE, Jenkins WJ, Monster J (1978) The sulphur isotopic composition of ocean water sulphate. Geochim Cosmochim Acta 42:377–381

    Article  Google Scholar 

  • Peters C, Strauss H, Haase K, Bach W, de Ronde CEJ, Kleint C, Stucker V (2021) SO2 disproportionation impacting hydrothermal sulfur cycling: Insights from multiple sulfur isotopes for hydrothermal fluids from the Tonga-Kermadec intraoceanic arc and the NE Lau Basin. Chem Geol 120586.

  • Reich M, Kesler SE, Utsunomiya S, Palenik CS, Chryssoulis SL, Ewing RC (2005) Solubility of gold in arsenian pyrite. Geochim Cosmochim Acta 69:2781–2796

    Article  Google Scholar 

  • Reyes AG (1990) Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment. J Volcanol Geotherm Res 43:279–309

    Article  Google Scholar 

  • Richardson CJ, Cann JR, Richards HG, Cowan JG (1987) Metal-depleted root zones of the Troodos ore-forming hydrothermal systems, Cyprus. Earth Plan Sci Lett 84:243–253

    Article  Google Scholar 

  • Stucker VK, de Ronde CEJ, Laurence KJ, Phillips AM (2022) Rare time series of hydrothermal fluids for a submarine volcano: 14 years of vent fluid compositions for Brothers Volcano, Kermadec Arc New Zealand. Econ Geol https://doi.org/10.5382/econgeo.4922

  • Román N, Reich M, Leisen M, Morata D, Barra F, Deditius AP (2019) Geochemical and micro-textural fingerprints of boiling in pyrite. Geochim Cosmochim Acta 246:60–85

  • Ryan WBF, Carbotte SM, Coplan JO, O’Hara S, Melkonian A, Arko R, Weissel RA, Ferrini V, Goodwillie A, Nitsche F, Bonczkowski J, Zemsky R (2009) Global multi-resolution topography synthesis. Geochem Geophys Geosyst 10:Q03014

    Article  Google Scholar 

  • Sakai H (1968) Isotopic properties of sulfur compounds in hydrothermal processes. Geochem J 2:29–49

    Article  Google Scholar 

  • Sakai H, Marais DJD, Ueda A, Moore JG (1984) Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts. Geochim Cosmochim Acta 48:2433–2441

    Article  Google Scholar 

  • Seewald JS, Reeves EP, Bach W, Saccocia PJ, Craddock PR, Walsh E, Shanks WC, Sylva SP, Pichler T, Rosner M (2019) Geochemistry of hot-springs at the SuSu Knolls hydrothermal field, Eastern Manus Basin: Advanced argillic alteration and vent fluid acidity. Geochim Cosmochim Acta 255:5–48

    Article  Google Scholar 

  • Sillitoe RH, Hannington MD, Thompson JFH (1996) High sulfidation deposits in the volcanogenic massive sulfide environment. Econ Geol 91:204–212

    Article  Google Scholar 

  • Timm C, de Ronde CEJ, Leybourne MI, Layton-Matthews D, Graham IJ (2012) Sources of chalcophile and siderophile elements in Kermadec Arc Lavas. Econ Geol 107:1527–1538

    Article  Google Scholar 

  • Tivey MK, Humphris SE, Thompson G, Hannington MD, Rona PA (1995) Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data. J Geophys Res: Solid Earth 100:12527–12555

    Article  Google Scholar 

  • Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140:217–240

    Article  Google Scholar 

  • Wohlgemuth-Ueberwasser CC, Viljoen F, Petersen S, Vorster C (2015) Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: an in-situ LA-ICP-MS study. Geochim Cosmochim Acta 159:16–41

    Article  Google Scholar 

  • Wright IC, Gamble JA (1999) Southern Kermadec submarine caldera arc volcanoes (SW Pacific): caldera formation by effusive and pyroclastic eruption. Mar Geol 161:207–227

    Article  Google Scholar 

Download references

Acknowledgements

This research used samples and data provided by the International Ocean Discovery Program (IODP). We thank the captain, crew, and technical staff aboard the D/V JOIDES Resolution during Expedition 376 “Brothers Arc Flux”, May–July 5th, 2018. AJM acknowledges the support of the European Consortium for Ocean Research Drilling during his participation on Expedition 376. We thank S. Tombros and an anonymous reviewer for their valuable feedback and associate editor D. Zhai and editor-in-chief G. Beaudoin for the editorial handling of this manuscript.

Funding

Post-cruise research was funded by the Natural Environmental Research Council grant NE/S006214/1 awarded to CJM and AJM at Cardiff University. JWJ is supported by the Canada Research Chair program. CdR acknowledges funding from the Ministry of Business, Innovation and Employment of the New Zealand Government.

Author information

Authors and Affiliations

Authors

Contributions

AJM was responsible for the study conception and design. Material preparation, data collection, and analysis were performed by AJM, GP, and IMD. The first draft of the manuscript was written by AJM, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Andrew J. Martin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Editorial handling: D. Zhai.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 200 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, A.J., Jamieson, J.W., de Ronde, C.E.J. et al. Trace metal and sulfur cycling in a hydrothermally active arc volcano: deep-sea drilling of the Brothers volcano, Kermadec arc, New Zealand. Miner Deposita 58, 403–425 (2023). https://doi.org/10.1007/s00126-022-01135-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-022-01135-x

Keywords

Navigation