Skip to main content

Advertisement

Log in

Biotite composition as a tracer of fluid evolution and mineralization center: a case study at the Qulong porphyry Cu-Mo deposit, Tibet

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Porphyry Cu-Mo deposits are magmatic-hydrothermal deposits in which sulfide and oxide minerals precipitate from aqueous solutions. However, many questions remain about the composition and evolution of the magmatic-hydrothermal fluids responsible for mineralization. In response to this knowledge gap at the Qulong porphyry Cu-Mo deposit, Tibet, we present a comprehensive major and trace element dataset for biotite (including halogens) from Qulong to elucidate magmatic-hydrothermal fluid compositions and fluid evolution. Based on genesis and occurrence, biotite is divided into primary (igneous), re-equilibrated (igneous modified by hydrothermal fluids), and secondary (hydrothermal) types. All studied biotite grains are Mg-rich, and XMg values (0.59–0.90) increased during fluid evolution, perhaps controlled by high oxygen fugacity (fO2) and sulfur fugacity (fS2) in the magmatic-hydrothermal fluids. The IV(F) and IV(Cl) values and halogen fugacity of biotite indicate that Cl-rich fluids were dominant during early magmatic-hydrothermal evolution, while later fluids were enriched in F. This is consistent with early Cu and late Mo enrichment in the Qulong deposit. We propose a fluid evolution model based on in situ major and trace element data and cross-cutting relationships between the intrusions and the veins. Iron, Ti, Co, Ni, Zn, and Cl contents decreased, while Mg, Si, Al, Sn, Ge, and F contents increased during the evolution of the magmatic-hydrothermal fluid. Importantly, the increase in Fe, Ti, Co, Zn, and Cl and decrease in Mg, Ge, and F contents in hydrothermal biotite as the core of the deposit is approached (extending to ~ 2.5 km depth) may prove to be an important indicator of high-grade mineralized zones. Finally, this study shows that systematic spatial variations in hydrothermal biotite chemistry can potentially be used as a prospecting tool for porphyry deposits worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Afshooni SZ, Mirnejad H, Esmaeily D, Haroni HA (2013) Mineral chemistry of hydrothermal biotite from the Kahang porphyry copper deposit (NE Isfahan), Central Province of Iran. Ore Geo Rev 54:214–232

    Article  Google Scholar 

  • Ahmed AD, Fisher L, Pearce M, Escolme AJ, Cooke DR, Howard D, Belousov I (2020) A microscale analysis of hydrothermal epidote: implications for the use of laser ablation-inductively coupled plasma- mass spectrometry mineral chemistry in complex alteration environments. Econ Geol 115:793–811

    Article  Google Scholar 

  • Audétat A, Gunther D, Heinrich CA (1998) Formation of a magmatic-hydrothermal ore deposit: insights with LA-ICP-MS analysis of fluid inclusions. Science 279:2091–2094

    Article  Google Scholar 

  • Audétat A, Pettke T (2003) The magmatic-hydrothermal evolution of two barren granites: a melt and fluid inclusion study of the Rito del Medio and Canada Pinabete plutons in northern New Mexico (USA). Geochim Cosmochim Acta 67:97–121

    Article  Google Scholar 

  • Audétat A (2010) Source and evolution of molybdenum in the porphyry Mo(-Nb) deposit at Cave Peak, Texas. J Petrol 51:1739–1760

    Article  Google Scholar 

  • Ayati F, Yavuz F, Noghreyan M, Haroni HA, Yavuz R (2008) Chemical characteristics and composition of hydrothermal biotite from the Dalli porphyry copper prospect, Arak, central province of Iran. Miner Petrol 94:107–122

    Article  Google Scholar 

  • Azadbakht Z, Lentz DR, McFarlane CRM, Whalen JB (2020) Using magmatic biotite chemistry to differentiate barren and mineralized Silurian-Devonian granitoids of New Brunswick, Canada. Contrib Mineral Petrol 175:69

    Article  Google Scholar 

  • Bai TB, van Groos AFK (1999) The distribution of Na, K, Rb, Sr, Al, Ge, Cu, W, Mo, La, and Ce between granitic melts and coexisting aqueous fluids. Geochim Cosmochim Acta 63:1117–1131

    Article  Google Scholar 

  • Beane R (1974) Biotite stability in the porphyry copper environment. Econ Geol 69:241–256

    Article  Google Scholar 

  • Blisniuk PM, Hacker BR, Glodny J, Ratschbacher L, Bi SW, Wu ZH, McWilliams MO, Calvert A (2001) Normal faulting in central Tibet since at least 13.5 Myr ago. Nature 412:628–632

    Article  Google Scholar 

  • Boomeri M, Nakashima K, Lentz DR (2010) The Sarcheshmeh porphyry copper deposit, Kerman, Iran: a mineralogical analysis of the igneous rocks and alteration zones including halogen element systematics related to Cu mineralization processes. Ore Geo Rev 38:367–381

    Article  Google Scholar 

  • Candela PA, Holland HD (1984) The partitioning of copper and molybdenum between silicate melts and aqueous fluids. Geochim Cosmochim Acta 48:373–380

    Article  Google Scholar 

  • Chen R, Liu YL, Guo LS, Wang ZH, Liu HF, Xu KF, Zhang JS (2014) Geochronology and geochemistry of the Tinggong porphyry copper ore deposit. Tibet Acta Geol Sin-Engl 88:780–800

    Article  Google Scholar 

  • Cooke DR, Hollings P, Walsh JL (2005) Giant porphyry deposits: characteristics, distribution, and tectonic controls. Econ Geol 100:801–818

    Article  Google Scholar 

  • Coulson IM, Dipple GM, Raudsepp M (2001) Evolution of HF and HCl activity in magmatic volatiles of the gold-mineralized Emerald Lake pluton, Yukon Territory, Canada. Miner Deposita 36:594–606

    Article  Google Scholar 

  • Czamanske GK, Wones DR (1973) Oxidation during magmatic differentiation, Finnmarka complex, Oslo area, Norway: part 2, the mafic silicates. J Petrol 14:349–380

    Article  Google Scholar 

  • DeCelles PG, Kapp P, Quade J, Gehrels GE (2011) Oligocene-Miocene Kailas basin, southwestern Tibet: record of postcollisional upper-plate extension in the Indus-Yarlung suture zone. Geol Soc Am Bull 123:1337–1362

    Article  Google Scholar 

  • Dingwell DB, Scarfe CM, Cronin DJ (1985) The effect of fluorine on viscosities in the system Na2O-Al2O3-SiO2: implications for phonolites, trachytes and rhyolites. Am Mineral 70:80–87

    Google Scholar 

  • Dubosq R, Schneider D, Camacho A, Lawley C (2019) Geochemical and geochronological discrimination of biotite types at the Detour Lake gold deposit, Canada. Minerals 9:1–22

    Article  Google Scholar 

  • Einaudi MT, Hedenquist JW, Inan EE (2003) Sulfidation state of fluids in active and extinct hydrothermal systems: transitions from porphyry to epithermal environments. Soc Econ Geol Spec Publ 10:285–313

    Google Scholar 

  • Ekström TK (1972) The distribution of fluorine among some coexisting minerals. Contrib Mineral Petrol 34:192–200

    Article  Google Scholar 

  • Fedele L, Lustrino M, Melluso L, Morra V, Zanetti A, Vannucci R (2015) Trace-element partitioning between plagioclase, alkali feldspar, Ti-magnetite, biotite, apatite, and evolved potassic liquids from Campi Flegrei (Southern Italy). Am Mineral 100:233–249

    Article  Google Scholar 

  • Hedenquist J, Arribas A, Reynolds T (1998) Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Econ Geol 93:373–404

    Article  Google Scholar 

  • Heinrich C (2005) The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study. Miner Deposita 39:864–889

    Article  Google Scholar 

  • Hendry DAF, Chivas AR, Reed SJB, Long JVP (1982) Geochemical evidence for magmatic fluids in porphyry copper mineralization. Contrib Mineral Petrol 78:404–412

    Article  Google Scholar 

  • Hendry DAF, Chivas AR, Long JVP, Reed SJB (1985) Chemical differences between minerals from mineralizing and barren intrusions from some North American porphyry copper deposits. Contrib Mineral Petrol 89:317–329

    Article  Google Scholar 

  • Henry DJ, Guidotti CV, Thomson JA (2005) The Ti-saturation surface for low-to-medium pressure metapelitic biotites: implications for geothermometry and Ti-substitution mechanisms. Am Mineral 90:316–328

    Article  Google Scholar 

  • Herzarkhani A, Williams-Jones AE, Gammons CH (1999) Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit. Iran Miner Deposita 34:770–783

    Article  Google Scholar 

  • Holland HD (1972) Granites, solutions, and base metal deposits. Econ Geol 67:281–301

    Article  Google Scholar 

  • Hou ZQ, Cook NJ (2009) Metallogenesis of the Tibetan collisional orogen: a review and introduction to the special issue. Ore Geo Rev 36:2–24

    Article  Google Scholar 

  • Hou ZQ, Gao YF, Qu XM, Rui ZY, Mo XX (2004) Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth Planet Sci Lett 220:139–155

    Article  Google Scholar 

  • Hou ZQ, Yang ZM, Qu XM, Meng XJ, Li ZQ, Beaudoin G, Rui ZY, Gao YF, Zaw K (2009) The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geo Rev 36:25–51

    Article  Google Scholar 

  • Hou ZQ, Duan LF, Lu YJ, Zheng YC, Zhu DC, Yang ZM, Yang ZS, Wang BD, Pei YR, Zhao ZD, McCuaig TC (2015a) Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan orogen. Econ Geol 110:1541–1575

    Article  Google Scholar 

  • Hou ZQ, Yang ZM, Lu YJ, Kemp A, Zheng YC, Li QY, Tang JX, Yang ZS, Duan LF (2015b) A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones. Geology 43:247–250

    Article  Google Scholar 

  • Hu YB, Liu JQ, Ling MX, Liu Y, Ding X, Liu DY, Sun WD (2017) Constraints on the origin of adakites and porphyry Cu-Mo mineralization in Chongjiang, Southern Gangdese, the Tibetan Plateau. Lithos 292:424–436

    Article  Google Scholar 

  • Jacobs DC, Parry WT (1976) A comparison of the geochemistry of biotite from some Basin and Range stocks. Econ Geol 71:1029–1035

    Article  Google Scholar 

  • Jacobs DC, Parry WT (1979) Geochemistry of biotite in the Santa Rita porphyry copper deposit, New Mexico. Econ Geol 74:860–887

    Article  Google Scholar 

  • Keppler H, Wyllie PJ (1991) Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-HF. Contrib Mineral Petrol 109:139–150

    Article  Google Scholar 

  • Keppler H (1993) Influence of fluorine on the enrichment of high-field strength trace-elements in granitic-rocks. Contrib Mineral Petrol 114:479–488

    Article  Google Scholar 

  • Kesler SE, Issigonis MJ, Brownlow AH, Damon PE, Moore WJ, Northcote KE, Preto VA (1975) Geochemistry of biotites from mineralized and barren intrusive systems. Econ Geol 70:559–567

    Article  Google Scholar 

  • Klemm LM, Pettke T, Heinrich CA (2008) Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA. Miner Deposita 43:533–552

    Article  Google Scholar 

  • Landtwing MR, Pettke T, Halter WE, Heinrich CA, Redmond PB, Einaudi MT, Kunze K (2005) Copper deposition during quartz dissolution by cooling magmatic-hydrothermal fluids: the Bingham porphyry. Earth Planet Sci Lett 235:229–243

    Article  Google Scholar 

  • Lentz D (1994) Exchange reactions in hydrothermally altered rocks: examples from biotite-bearing assemblages. In: Lentz D (ed) Alteration and alteration processes associated with ore-forming systems. Geological Association of Canada, Short Course 11, pp 69–99

  • Li JX, Qin KZ, Li GM, Xiao B, Chen L, Zhao JX (2011) Post-collisional ore-bearing adakitic porphyries from Gangdese porphyry copper belt, southern Tibet: melting of thickened juvenile arc lower crust. Lithos 126:265–277

    Article  Google Scholar 

  • Li JX, Li GM, Qin KZ, Xiao B, Chen L, Zhao JX (2012) Mineralogy and mineral chemistry of the Cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco arc, northern Tibet. Resour Geol 62:19–41

    Article  Google Scholar 

  • Li JX, Fan WM, Zhang LY, Ding L, Yue YH, Xie J, Cai FL, Quan QY, Sein K (2020a) Biotite geochemistry deciphers magma evolution of Sn-bearing granite, southern Myanmar. Ore Geo Rev 121:103565

    Article  Google Scholar 

  • Li X, Zhang C, Behrens H, Holtz F (2020b) Calculating biotite formula from electron microprobe analysis data using a machine learning method based on principal components regression. Lithos 356–357:105371

    Article  Google Scholar 

  • Li Y, Selby D, Condon D, Tapster S (2017a) Cyclic magmatic-hydrothermal evolution in porphyry systems: high-precision U-Pb and Re-Os geochronology constraints on the Tibetan Qulong porphyry Cu-Mo deposit. Econ Geol 112:1419–1440

    Article  Google Scholar 

  • Li Y, Selby D, Feely M, Costanzo A, Li XH (2017b) Fluid inclusion characteristics and molybdenite Re-Os geochronology of the Qulong porphyry copper-molybdenum deposit. Tibet Miner Deposita 52:137–158

    Article  Google Scholar 

  • Li Y, Li XH, Selby D, Li JW (2018) Pulsed magmatic fluid release for the formation of porphyry deposits: tracing fluid evolution in absolute time from the Tibetan Qulong Cu-Mo deposit. Geology 46:7–10

    Article  Google Scholar 

  • Liu WH, McPhail DC (2005) Thermodynamic properties of copper chloride complexes and copper transport in magmatic-hydrothermal solutions. Chem Geol 221:21–39

    Article  Google Scholar 

  • Liu Y, Hu Z, Gao S, Guenther D, Xu J, Gao C, Chen H (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol 257:34–43

    Article  Google Scholar 

  • Manning DAC, Henderson P (1984) The behavior of tungsten in granitic melt-vapor systems. Contrib Mineral Petrol 86:286–293

    Article  Google Scholar 

  • Mercer CN, Hofstra AH, Todorov TI, Roberge J, Burgisser A, Adams DT, Cosca M (2015) Pre-eruptive conditions of the Hideaway Park topaz rhyolite: insights into metal source and evolution of magma parental to the Henderson porphyry molybdenum deposit, Colorado. J Petrol 56:645–679

    Article  Google Scholar 

  • Mercer CN, Reed MH (2013) Porphyry Cu-Mo stockwork formation by dynamic, transient hydrothermal pulses: mineralogic insights from the deposit at Butte, Montana. Econ Geol 108:1347–1377

    Article  Google Scholar 

  • Moine B, de Parseval P, Rakotondrazafy M, Ramambazafy A (2019) Fluorine-controlled composition of biotite in granulites of Madagascar: the effect of fluorine on thermometry of biotite-garnet gneisses. Contrib Mineral Petrol 174:75

    Article  Google Scholar 

  • Moore WJ, Czamanske GK (1973) Compositions of biotites from unaltered and altered monzonitic rocks in the Bingham Mining District, Utah. Econ Geol 68:269–274

    Article  Google Scholar 

  • Moshefi P, Hosseinzadeh MR, Moayyed M, Lentz DR (2018) Comparative study of mineral chemistry of four biotite types as geochemical indicators of mineralized and barren intrusions in the Sungun Porphyry Cu - Mo deposit, northwestern Iran. Ore Geo Rev 97:1–20

    Article  Google Scholar 

  • Mungall JE (2002) Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits. Geology 30:915–918

    Article  Google Scholar 

  • Munoz JL (1984) F-OH and Cl-OH exchange in micas with applications to hydrothermal ore-deposits. Rev Mineral 13:469–493

    Google Scholar 

  • Munoz JL (1992) Calculation of HF and HCl fugacities from biotite compositions: revised equations. Geol Soc Am Abstr Programs 24:A221

    Google Scholar 

  • Parry WT, Ballantyne GH, Wilson JC (1978) Chemistry of biotite and apatite from a vesicular quartz latite porphyry plug at Bingham, Utah. Econ Geol 73:1308–1314

    Article  Google Scholar 

  • Parsapoor A, Khalili M, Tepley F, Maghami M (2015) Mineral chemistry and isotopic composition of magmatic, re-equilibrated and hydrothermal biotites from Darreh-Zar porphyry copper deposit, Kerman (Southeast of Iran). Ore Geo Rev 66:200–218

    Article  Google Scholar 

  • Qin KZ, Xia DX, Duo J, Li GM, Jiang GW, Bo X, Zhao JX (2014) Qulong porphyry-skarn copper-molybdenum deposit in Tibet. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Qu XM, Hou ZQ, Zaw K, Li YG (2007) Characteristics and genesis of Gangdese porphyry copper deposits in the southern Tibetan Plateau: preliminary geochemical and geochronological results. Ore Geo Rev 31:205–223

    Article  Google Scholar 

  • Ramberg H (1952) Chemical bonds and distribution of cations in silicates. J Geol 60:331–355

    Article  Google Scholar 

  • Rasmussen KL, Mortensen JK (2013) Magmatic petrogenesis and the evolution of (F:Cl:OH) fluid composition in barren and tungsten skarn-associated plutons using apatite and biotite compositions: case studies from the northern Canadian Cordillera. Ore Geo Rev 50:118–142

    Article  Google Scholar 

  • Redmond PB, Einaudi MT, Inan EE, Landtwing MR, Heinrich CA (2004) Copper deposition by fluid cooling in intrusion-centered systems: new insights from the Bingham porphyry ore deposit, Utah. Geology 32:217–220

    Article  Google Scholar 

  • Redmond PB, Einaudi MT (2010) The Bingham Canyon Porphyry Cu-Mo-Au deposit. I. Sequence of intrusions, vein formation, and sulfide deposition. Econ Geol 105:43–68

    Article  Google Scholar 

  • Richards JP (2011) Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geo Rev 40:1–26

    Article  Google Scholar 

  • Rieder M, Cavazzini G, D’Yakonov YS, Frank-Kamenetskii VA, Gottardi G, Guggenheim S, Koval PV, Muller G, Neiva AMR, Radoslovich EW, Robert JL, Sassi FP, Takeda H, Weiss Z, Wones DR (1998) Nomenclature of the micas. Can Mineral 36:905–912

    Google Scholar 

  • Ruaya JR (1988) Estimation of instability constants of metal chloride complexes in hydrothermal solutions up to 300℃. Geochim Cosmochim Acta 52:1983–1996

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry. Pergamon, Oxford, pp 1–64

    Google Scholar 

  • Seedorff E, Dilles J, Proffett JM, Einaudi MT, Zurcher L, Stavast WJA, Johnson DA, Barton M (2005) Porphyry deposits: characteristics and origin of hypogene features. Econ Geol 100th Anniv Vol:251–298

  • Seedorff E, Einaudi MT (2004) Henderson porphyry molybdenum system, Colorado: I. Sequence and abundance of hydrothermal mineral assemblages, flow paths of evolving fluids, and evolutionary style. Econ Geol 99:3–37

    Google Scholar 

  • Selby D, Nesbitt BE (2000) Chemical composition of biotite from the Casino porphyry Cu-Au-Mo mineralization, Yukon, Canada: evaluation of magmatic and hydrothermal fluid chemistry. Chem Geol 171:77–93

    Article  Google Scholar 

  • Siahcheshm K, Calagari AA, Abedini A, Lentz DR (2012) Halogen signatures of biotites from the Maher-Abad porphyry copper deposit, Iran: characterization of volatiles in syn- to post-magmatic hydrothermal fluids. Int Geol Rev 54:1353–1368

    Article  Google Scholar 

  • Siahcheshm K, Wagner C, Orberger B, Fialin M, Rividi N (2020) F, Cl content of hydrothermal biotite as a geochemical indicator vectoring to ore: constrain on Niaz Cu-Mo porphyry deposit, NW Iran. EGU General Assembly 2020, Online, 4–8 May 2020

  • Sillitoe RH (1985) Ore-related breccias in volcanoplutonic arcs. Econ Geol 80:1467–1514

    Article  Google Scholar 

  • Sillitoe RH (2010) Porphyry Copper Systems. Econ Geol 105:3–41

    Article  Google Scholar 

  • Simon AC, Pettke T, Candela PA, Piccoli PM, Heinrich CA (2006) Copper partitioning in a melt-vapor-brine-magnetite-pyrrhotite assemblage. Geochim Cosmochim Acta 70:5583–5600

    Article  Google Scholar 

  • Speer JA (1987) Evolution of magmatic AFM mineral assemblages in granitoid rocks: the hornblende + melt = biotite reaction in the Liberty Hill pluton, South Carolina. Am Mineral 72:863–878

    Google Scholar 

  • Stollery G, Borcsik M, Holland HD (1971) Chlorine in intrusives: a possible prospecting tool. Econ Geol 66:361–367

    Article  Google Scholar 

  • Sun K, Chen B, Deng J (2019) Biotite in highly evolved granites from the Shimensi W-Cu-Mo polymetallic ore deposit, China: insights into magma source and evolution. Lithos 350–351:105245

    Article  Google Scholar 

  • Sun WD, Arculus RJ, Kamenetsky VS, Binns RA (2004) Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature 431:975

    Article  Google Scholar 

  • Sun X, Zheng YY, Wu S, You ZM, Wu X, Li M, Zhou TC, Dong J (2013) Mineralization age and petrogenesis of associated intrusions in the Mingze-Chengba porphyry-skarn Mo-Cu deposit, Gangdese. Acta Petrol Sin 29:1392–1406

    Google Scholar 

  • Tang JX, Lang XH, Xie FW, Gao YM, Li ZJ, Huang Y, Ding F, Yang HH, Zhang L, Wang Q, Zhou Y (2015) Geological characteristics and genesis of the Jurassic No. I porphyry Cu-Au deposit in the Xiongcun district, Gangdese porphyry copper belt. Tibet Ore Geo Rev 70:438–456

    Article  Google Scholar 

  • Tang P, Chen YC, Tang JX, Wang Y, Zheng WB, Leng QF, Lin B, Wu CN (2019) Advances in research of mineral chemistry of magmatic and hydrothermal biotites. Acta Geol Sin-Engl 93:1947–1966

    Article  Google Scholar 

  • Taylor RP (1983) Comparison of biotite geochemistry of Bakircay, Turkey, and Los-pelambres, Chile, porphyry copper systems. Trans Inst Min Metall B92:B16–B22

    Google Scholar 

  • Teiber H, Marks MAW, Wenzel T, Siebel W, Altherr R, Markl G (2014) The distribution of halogens (F, Cl, Br) in granitoid rocks. Chem Geol 374:92–109

    Article  Google Scholar 

  • Teiber H, Scharrer M, Marks MAW, Arzamastsev AA, Wenzel T, Markl G (2015) Equilibrium partitioning and subsequent re-distribution of halogens among apatite–biotite–amphibole assemblages from mantle-derived plutonic rocks: complexities revealed. Lithos 220–223:221–237

    Article  Google Scholar 

  • Tso JL, Gilbert MC, Craig JR (1979) Sulfidation of synthetic biotites. Am Mineral 64:304–316

    Google Scholar 

  • Ulrich T, Gunther D, Heinrich CA (2001) The evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina. Econ Geol 96:1743–1774

    Article  Google Scholar 

  • Wang R, Weinberg RF, Collins WJ, Richards JP, Zhu DC (2018) Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet. Earth-Sci Rev 181:122–143

    Article  Google Scholar 

  • Webster JD, Holloway JR, Hervig RL (1989) Partitioning of lithophile trace-elements between H2O and H2O + CO2 fluids and topaz rhyolite melt. Econ Geol 84:116–134

    Article  Google Scholar 

  • Williams-Jones AE, Heinrich CA (2005) Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Econ Geol 100:1287–1312

    Article  Google Scholar 

  • Williams TJ, Candela PA, Piccoli PM (1995) The partitioning of copper between silicate melts and two-phase aqueous fluids: an experimental investigation at 1 kbar, 800℃ and 0.5 kbar, 850℃. Contrib Mineral Petrol 121:388–399

    Article  Google Scholar 

  • Wones DR, Eugster HP (1965) Stability of biotite: experiment, theory and application. Am Mineral 50:1228–1272

    Google Scholar 

  • Xiao B, Qin KZ, Li GM, Li JX, Xia DX, Chen L, Zhao JX (2009) S-rich, highly-oxidized ore-bearing magma in the Qulong giant porphyry-Type Cu-Mo deposit in southern Tibet: evidence from magmatogenic anhydrite. Acta Geol Sin 83:1860–1868

    Google Scholar 

  • Xiao B (2011) Highly oxidized magmatic-hydrothermal ore-forming process at the Qulong giant porphyry Cu-Mo deposit, Gangdese, Tibet. PhD thesis, University of Chinese Academy of Sciences

  • Xiao B, Qin KZ, Li GM, Li JX, Xia DX, Chen L, Zhao JX (2012) Highly oxidized magma and fluid evolution of miocene Qulong giant porphyry Cu-Mo deposit, southern Tibet, China. Resour Geol 62:4–18

    Article  Google Scholar 

  • Xiao ZF, Gammons CH, Williams-Jones AE (1998) Experimental study of copper(I) chloride complexing in hydrothermal solutions at 40 to 300℃ and saturated water vapor pressure. Geochim Cosmochim Acta 62:2949–2964

    Article  Google Scholar 

  • Yang ZM, Cooke DR (2019) Porphyry copper deposits in China. SEG Spec Pub 22:133–187

    Google Scholar 

  • Yang ZM, Hou ZQ, White NC, Chang ZS, Li ZQ, Song YC (2009) Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong. Tibet Ore Geo Rev 36:133–159

    Article  Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Annual Rev Earth Planet Sci 28:211–280

    Article  Google Scholar 

  • Zajacz Z, Seo JH, Candela PA, Piccoli PM, Tossell JA (2011) The solubility of copper in high-temperature magmatic vapors: a quest for the significance of various chloride and sulfide complexes. Geochim Cosmochim Acta 75:2811–2827

    Article  Google Scholar 

  • Zhang L (2000) Stable isotope investigation of a hydrothermal alteration system: Butte porphyry copper deposit. PhD thesis, Oregon State University

  • Zhang S, Zheng YC, Huang KX, Li W, Sun QZ, Li QY, Fu Q, Liang W (2012) Re-Os dating of molybdenite from Nuri Cu-W-Mo deposit and its geological significance. Miner Depos 31:337–346

    Google Scholar 

  • Zhang W, Lentz DR, Thorne KG, McFarlane C (2016) Geochemical characteristics of biotite from felsic intrusive rocks around the Sisson Brook W-Mo-Cu deposit, west-central New Brunswick: an indicator of halogen and oxygen fugacity of magmatic systems. Ore Geo Rev 77:82–96

    Article  Google Scholar 

  • Zhang Z, Ding H, Dong X, Tian Z (2018) The Gangdese arc magmatism: from Neo-Tethyan subduction to Indo-Asian collision. Earth Sci Front 25:78–91

    Google Scholar 

  • Zhao JX, Qin KZ, Li GM, Li JX, Xiao B, Chen L, Yang YH, Li C, Liu YS (2014) Collision-related genesis of the Sharang porphyry molybdenum deposit, Tibet: evidence from zircon U-Pb ages, Re-Os ages and Lu-Hf isotopes. Ore Geo Rev 56:312–326

    Article  Google Scholar 

  • Zhao JX, Qin KZ, Li GM, Cao MJ, Evans NJ, McInnes BIA, Li JX, Xiao B, Chen L (2015) The exhumation history of collision-related mineralizing systems in Tibet: insights from thermal studies of the Sharang and Yaguila deposits, central Lhasa. Ore Geo Rev 65:1043–1061

    Article  Google Scholar 

  • Zhao JX, Li GM, Evans NJ, Qin KZ, Li JX, Zhang XN (2016a) Petrogenesis of Paleocene-Eocene porphyry deposit-related granitic rocks in the Yaguila-Sharang ore district, central Lhasa terrane. Tibet J Asian Earth Sci 129:38–53

    Article  Google Scholar 

  • Zhao JX, Qin KZ, Xiao B, McInnes B, Li GM, Evans N, Cao MJ, Li JX (2016b) Thermal history of the giant Qulong Cu-Mo deposit, Gangdese metallogenic belt, Tibet: constraints on magmatic-hydrothermal evolution and exhumation. Gondwana Res 36:390–409

    Article  Google Scholar 

  • Zheng WB, Tang JX, Zhong KH, Ying LJ, Leng QF, Ding SA, Lin B (2016) Geology of the Jiama porphyry copper-polymetallic system, Lhasa Region, China. Ore Geo Rev 74:151–169

    Article  Google Scholar 

  • Zheng YC, Hou ZQ, Li W, Liang W, Huang KX, Li QY, Sun QZ, Fu Q, Zhang S (2012) Petrogenesis and geological implications of the Oligocene Chongmuda-Mingze adakite-like intrusions and their mafic enclaves, southern Tibet. J Geol 120:647–669

    Article  Google Scholar 

  • Zheng YY, Zhang GY, Xu RK, Gao SB, Pang YC, Cao L, Du AD, Shi YR (2007) Geochronologic constraints on magmatic intrusions and mineralization of the Zhunuo porphyry copper deposit in Gangdese. Tibet Chin Sci Bull 52:3139–3147

    Article  Google Scholar 

  • Zhu C, Sverjensky DA (1991) Partitioning of F-Cl-OH between minerals and hydrothermal fluids. Geochim Cosmochim Acta 55:1837–1858

    Article  Google Scholar 

  • Zhu C, Sverjensky DA (1992) F-Cl-OH partitioning between biotite and apatite. Geochim Cosmochim Acta 56:3435–3467

    Article  Google Scholar 

Download references

Acknowledgements

We are extremely grateful to Mr. Daixiang Xia and the members of the Tibet Julong Copper Co. Ltd., for providing access to the mine, drill core samples, and valuable insights into the geological evolution of the Qulong deposit. We would like to extend our gratitude to Prof. Fangyue Wang for LA-ICP-MS analysis. We thank the Editor-in-Chief, Bernd Lehmann; Associate Editor, Celestine Mercer; and two reviewers, Constantinos Mavrogonatos and Parinesa Moshefti for their constructive comments and excellent suggestions that assisted in improving this manuscript.

Funding

This study was funded by the National Natural Science Foundation of China (grant numbers 41972089, 41872086, and 41972083) and the National Key R&D Program of China (2016YFC0600308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Li.

Additional information

Editorial handling: C. N. Mercer

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 852 kb)

Supplementary file2 (DOCX 1385 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, K., Li, G., Zhao, J. et al. Biotite composition as a tracer of fluid evolution and mineralization center: a case study at the Qulong porphyry Cu-Mo deposit, Tibet. Miner Deposita 57, 1047–1069 (2022). https://doi.org/10.1007/s00126-021-01085-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-021-01085-w

Keywords

Navigation