Skip to main content
Log in

Chemical and boron isotopic composition of tourmaline from the Mariinsky emerald deposit, Central Urals, Russia

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Tourmaline is abundant at the Mariinsky schist-hosted emerald deposit in the Central Urals, Russia, both in emerald-bearing phlogopite veins (type 1) and later, emerald-free pockets, lenses, and veinlets cutting the phlogopite veins (type 2). The Ca content in tourmaline is influenced by the host rocks (ultramafic and mafic rocks), associated minerals, and minerals crystallized before tourmaline (amphibole, fluorite, margarite). The Na concentration in tourmaline depends on the presence or absence of paragonite, and the association with micas also strongly influences the contents of Li, Zn, Ni, and Co in tourmaline. Type 1 tourmalines associated with phlogopite are relatively depleted in these elements, whereas type 2 tourmalines associated with margarite or paragonite are enriched. Some differences in isomorphic substitutions along with the trace element composition (Zn, V, Sr, Co, REE) may have value in exploration of emerald-bearing and emerald-free veins in schist-hosted emerald deposits. The δ11B values in tourmaline of all types fall in a narrow total range from −11.3 to −8.4‰. These values, combined with a mineralization temperature of 420–360 °C, yield an estimated δ11B fluid composition of −7.4 to −6.8‰ suggesting a mixed source of boron, likely dominated from the granitic rocks surrounding the emerald belt. The narrow range of B-isotope compositions in tourmaline from throughout the Mariinsky deposit suggests a well-mixed hydrothermal system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Arif M, Fallick AE, Moon CJ (1996) The genesis of emeralds and their host rocks from Swat, northwestern Pakistan: a stable-isotope investigation. Mineral Deposita 31:255–268

    Article  Google Scholar 

  • Arif M, Henry DJ, Moon CJ (2010) Cr-bearing tourmaline associated with emerald deposits from Swat, NW Pakistan: genesis and its exploration significance. Am Mineral 95:799–809

    Article  Google Scholar 

  • Bačík P, Uher P, Ertl A, Jonsson E, Nisten P, Kanický V, Vacullovivič T (2012) Zoned REE-enriched dravite from a granitic pegmatite in Forshammar, Bergslagen province, Sweden: an EMPA, XRD and LA-ICP-MS study. Can Mineral 50:825–841

    Article  Google Scholar 

  • Baksheev IA, Kudryavtseva OE, Belyatsky BV, Popov MP, Sarantseva NP, Vydrin MV (2003) Tourmaline-bearing alterations of the Ural emerald mines. Part II. Phlogopitite. Ural Geol J 4:3–34 (in Russian)

    Google Scholar 

  • Baksheev IA, Kudryavtseva OE, Firsova NP, Popov MP (2002) Tourmaline-bearing alterations of the Ural emerald mines. Part I. Early albite–tourmaline–amphibole alteration. Ural Geol J 4:25–34 (in Russian)

    Google Scholar 

  • Beus AA (1966) Geochemistry of beryllium and genetic types of beryllium deposits. Freeman, San Francisco

    Google Scholar 

  • Bidny AS, Baksheev IA, Popov MP (2011) Rb–Sr systematics of beryl-bearing phlogopite schists at the eastern contact of the Murzinka–Adui granite complex, Urals. Litosfera 6:141–145 (in Russian)

    Google Scholar 

  • Bidny AS (2012) Mineralogy, age, and genesis of beryl occurrences in the Ural emerald belt. Dissertation, Moscow State University (in Russian)

  • Catanzaro EJ, Champion CE, Garner EL, Malinenko G, Sappenfield KM, Shields WR (1970) Boric acid: isotopic and assay standard reference materials. US National Bureau Standards, Washington, D.C Special Publication 260-17

    Google Scholar 

  • Clark CM, Hawthorne FC, Ottolini L (2011) Fluor-dravite, NaMg3Al6Si6O18(BO3)3(OH)3F, a new mineral species of the tourmaline group from the Crabtree emerald mine, Mitchell County, North Carolina: description and crystal structure. Can Mineral 49:57–62

    Article  Google Scholar 

  • Colopietro MR, Frieberg LM (1987) Tourmaline-biotite as a potential geothermometer for metapelites; Black Hills, South Dakota. Geol Soc Amer Abstracts with Programs 19(7):624

    Google Scholar 

  • Čopjaková R, Škoda R, Vašinová-Galiová M, Novák M (2013) Distributions of Y + REE and Sc in tourmaline and their implications for the melt evolution; examples from NYF pegmatites of the Třebíč pluton, Moldanubian zone, Czech Republic. J Geosci 58:113–131

    Article  Google Scholar 

  • Dutrow BL, Henry DJ (2000) Complexly zoned fibrous tourmaline, Cruzeiro mine, Minas Gerais, Brazil: a record of evolving magmatic and hydrothermal fluids. Can Mineral 38:131–143

    Article  Google Scholar 

  • Dyar MD, Wiedenbeck M, Robertson D, Cross LR, Delaney JS, Ferguson K, Francis CA, Grew ES, Guidotti CV, Hervig RL, Hughes JM, Husler J, Leeman W, McGuire AV, Rhede D, Rothe H, Paul RL, Richards I, Yates M (2001) Reference minerals for microanalysis of light elements. Geostand Newslett 25:441–463

    Article  Google Scholar 

  • Ertl A, Hughes JM, Prowatke S, Ludwig T, Prasad PSR, Brandstätter F, Körner W, Schuster R (2006) Tetrahedrally coordinated boron in tourmaline from the liddicoatite-elbaite series from Madagascar: structure, chemistry, and infrared spectroscopic studies. Am Mineral 91:1847–1856

    Article  Google Scholar 

  • Erokhin YuV (2006) Mineralogy of the Bazhenovsky ophiolite complex. Dissertation, Inst Geol Geochem Russ Acad Scie, Yekaterinburg (in Russian)

  • Farber K, Dziggel A, Trumbull RB, Meyer FM, Wiedenbeck M (2015) Tourmaline B-isotopes as tracers of fluid sources in silicified Palaeoarchean oceanic crust from the Mendon formation, Barberton greenstone belt, South Africa. Chem Geol 417:134–147

    Article  Google Scholar 

  • Fersman AE (1925) Gems of the USSR. Vol. 2 ANSSSR, Leningrad, p. 123–228 (in Russian)

  • Fershtater GB, Krasnobaev AA, Bea F, Montero P, Borodina NS (2007) Geodynamic settings and history of the Paleozoic intrusive magmatism of the central and southern Urals: results of zircon dating. Geotectonics 41:465–486

    Article  Google Scholar 

  • Galbraith CG, Clarke BD, Trumbull RB, Wiedenbeck M (2009) Assessment of tourmaline compositions as an indicator of emerald mineralization at the Tsa da Glisza prospect, Yukon territory, Canada. Econ Geol 104:713–731

    Article  Google Scholar 

  • Gavrilenko E. (2003) Esmeraldas de los Urales (Rusia): condiciones de formación y caracterización comparativa con las Esmeraldas de otros origenes. Master thesis, Univ Politécn Madrid

  • Ginzburg AI (1959) Pneumatolithic-hydrothermal beryllium deposits. In: Geology of rare element deposits Moscow 4:4–13 (in Russian)

    Google Scholar 

  • Giuliani G, Silva LJHD, Couto P (1990) Origin of emerald deposits of Brazil. Mineral Deposita 25:57–64

    Article  Google Scholar 

  • Groat LA, Giuliani G, Marshall DD, Turner D (2008) Emerald deposits and occurrences: a review. Ore Geol Rev 34:87–112

    Article  Google Scholar 

  • Groat LA, Marshall DD, Giuliani G, Murphy DC, Piercey SJ, Jambor JL, Mortensen JK, Ercit TS, Gault RA, Mattey DP, Schwarz D, Maluski H, Wise MA, Wengzynowsk W, Eaton DW (2002) Mineralogical and geochemical study of the Regal Ridge emerald showing, southeastern Yukon. Can Mineral 40:1313–1338

    Article  Google Scholar 

  • Grundmann G, Morteani G (1989) Emerald mineralization during regional metamorphism: the Habachtal (Austria) and Leydsdorp (Transvaal, South Africa) deposits. Econ Geol 84:1835–1849

    Article  Google Scholar 

  • Henry DJ, Novák M, Hawthorne FC, Ertl A, Dutrow BL, Uher P, Pezzotta F (2011) Nomenclature of the tourmaline-supergroup minerals. Am Mineral 96:895–913

    Article  Google Scholar 

  • Jarosewich E (2002) Smithsonian microbeam standards. J Res Natl Inst Stand Technol 107(6):681–685

  • Khiller VV, Popov MP, Erokhin YV, Zakharov AV (2015) Th-U-Pb-age of rare-metal granitic pegmatites at eastern contact of Adui pluton, central Urals, Russia. Bull Voronezh Univ Ser Geol 4:61–65 (in Russian)

    Google Scholar 

  • Kontak DJ, Dostal J, Kyser TK, Archibald DA (2002) A petrological, geochemical, isotopic and fluid-inclusion study of 370 ma pegmatite–aplite sheets, Peggys Cove, Nova Scotia, Canada. Can Mineral 40:1249–1286

    Article  Google Scholar 

  • Kudryavtseva OE, Baksheev IA, Popov MP, Ustinov VI (2004) Tourmaline-bearing alterations of the Ural emerald mines. Part III. Tourmaline-margarite veinlets with albite, phlogopite, and chlorite. Ural Geol J 3:51–68 (in Russian)

    Google Scholar 

  • Kupriyanova II (2002) On the genesis of the Malyshevsk beryllium-emerald deposit (middle Urals, Russia). Geol Ore Deposits 44:276–290

    Google Scholar 

  • Kupriyanova II, Sokolov SV (1984) Formation conditions of phlogopite-beryllium mineralization. Geol Rudn Mestorozhd 26(6):32–44 (in Russian)

    Google Scholar 

  • Laurs BM, Dilles JH, Snee LW (1996) Emerald mineralization and metasomatism of amphibolite, Khaltaro granitic pegmatite–hydrothermal vein system, Haramosh Mountains, northern Pakistan. Can Mineral 34:1253–1286

    Google Scholar 

  • Longerich HP, Jackson SE, Günther D (1996) Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal At Spectrom 11:899–904

    Article  Google Scholar 

  • Marschall HR, Jiang SY (2011) Tourmaline isotopes: no element left behind. Elements 7:313–319

    Article  Google Scholar 

  • Marschall HR, Wanless VD, Shimizu N, Pogge von Strandmann PAE, Elliot T, Monteleone BD (2017) The boron and lithium isotopic composition of mid-ocean ridge basalt and the mantle. Geochim Cosmochim Acta 207:102–138

    Article  Google Scholar 

  • McDonough WF, Sun S-s (1995) The composition of the earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Meyer C, Wunder B, Meixner A, Romer RL, Heinrich W (2008) Boron isotope fractionation between tourmaline and fluid: an experimental re-investigation. Contrib Mineral Petrol 156:259–267

    Article  Google Scholar 

  • Novák M, Škoda R, Filip J, Macek I, Vaculovič T (2011) Compositional trends in tourmaline from intragranitic NYF pegmatites of the Třebíč pluton, Czech Republic: an electron microprobe, Mössbauer and LA–ICP–MS study. Can Mineral 49:359–380

    Article  Google Scholar 

  • Okunlola OA, Oyedokun MO (2009) Compositional trends and rare metal (Ta-Nb) mineralization potential of pegmatite and associated lithologies of Igbeti area, southwestern Nigeria. RMZ - Mater Geoenvir 56:38–53

    Google Scholar 

  • Popov MP (2014) Geological and mineralogical features of rare metal mineralization at the eastern contact of the Adui pluton within the Ural emerald belt. Ural State Min Univ, Yekaterinburg, 142 pp (in Russian)

  • Popov MP, Erokhin YV (2010) Typical features of fluorite from the Mariinsky beryllium deposit, Ural emerald mines. Litosfera 4:157–162 (in Russian)

    Google Scholar 

  • Popov MP, Zhernakov VI, Zolotukhin FF, Samsonov AV (2008) Ural emerald mines. Ural State Min Univ, Yekaterinburg (in Russian)

    Google Scholar 

  • Popov VS, Bogatov VI, PetrovaAYu BBV (2003) Age and possible sources of granites from the Murzinka-Adui block, the central Urals: Rb–Sr and Sm–Nd isotopic evidence. Litosfera 4:3–18 (in Russian)

    Google Scholar 

  • Rakotovao AP (2009) Contexte géologique et métallogénique des minéralisations en émeraude du gisement de Ianapera, bloc du Vohibory, Sud-Ouest de Madagascar. Dissertation, l’Université de Toulouse III-Paul Sabatier

  • Reznitskii L, Clark CM, Hawthorne FC, Grice JD, Skogby H, Hålenius U, Bosi F (2014) Chromo-alumino-povondraite, NaCr3(Al4Mg2)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. Am Mineral 99:1767–1773

    Article  Google Scholar 

  • Schmid S (2001) The geology and genesis of the ‘Kandemwa’ emerald deposit in Zimbabwe, Africa. EUG XI 2001. Abstracts with Program, p. 548

  • Seifert AV, Žáček V, Vrána S, Pecina V, Zachariáš J, Zwaan JC (2004) Emerald mineralization in the Kafubu area, Zambia. Czech Geol Surv Bull Geosci 79:1–40

    Google Scholar 

  • Sherstyuk AI, Kozlov VA (1976) Microthermometry of fluid inclusions in the Ural emeralds. Proc Sverdlovsk Mining Inst 124:42–48 (in Russian)

    Google Scholar 

  • Smith HJ, Spivack AJ, Staudigel H, Hart SR (1995) The boron isotopic composition of altered oceanic crust. Chem Geol 126:119–135

    Article  Google Scholar 

  • Spiridonov EM (1998) Gemstone deposits of the former Soviet Union. J Gemmol 26:111–125

    Article  Google Scholar 

  • Trumbull RB, Krienitz M-S, Grundmann G, Wiedenbeck M (2009) Tourmaline geochemistry and δ11B variations as a guide to fluid–rock interaction in the Habachtal emerald deposit, Tauern window, Austria. Contrib Mineral Petrol 157:411–427

    Article  Google Scholar 

  • Trumbull RB, Beurlen H, Wiedenbeck M, Soares DR (2013) The diversity of B-isotope variations in tourmaline from rare-element pegmatites in the Borborema Province of Brazil. Chem Geol 352:47–62

    Article  Google Scholar 

  • Vlasov KA, Kutukova EI (1960) Emerald mines. AN SSSR, Moscow 251 pp (in Russian)

  • Zachariáš J, Žáček V, Pudilová M, Machovič V (2005) Fluid inclusions and stable isotope study of quartz-tourmaline veins associated with beryl and emerald mineralization, Kafubu area, Zambia. Chem Geol 223:136–152

    Article  Google Scholar 

  • Zhernakov VI (1998) Topaz-paragonite metasomatic complexes of the Mariinsky emerald deposit. In: Geology of metamorphic complexes. USMGA, Yekaterinburg, pp. 94–101 (in Russian)

  • Zhernakov VI (2009) Ural emerald mines (notes on mineralogy). Mineral Almanac 14(2):7–125

    Google Scholar 

  • Zolotukhin FF (1999) Regularities of the emerald distribution in the Malyshevskoe deposit. Geol Ore Deposits 41:398–413

    Google Scholar 

  • Zolotukhin FF (1996) Mariinsky (Malyshevo) emerald deposit. St. Petersburg State Univ, St. Petersburg (in Russian)

    Google Scholar 

Download references

Acknowledgments

For their expert help with the SIMS analyses, we owe thanks to Frederic Couffignal and Alex Rocholl. Leonid Danyushevsky from CODES is thanked for his assistance in LA-ICP-MS analyses. We acknowledge gratefully the constructive reviews of Peter Bačik and Walter Pohl.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan A. Baksheev.

Additional information

Editorial handling: B. Lehmann

Electronic supplementary material

ESM 1

(XLSX 64 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baksheev, I.A., Trumbull, R.B., Popov, M.P. et al. Chemical and boron isotopic composition of tourmaline from the Mariinsky emerald deposit, Central Urals, Russia. Miner Deposita 53, 565–583 (2018). https://doi.org/10.1007/s00126-017-0759-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-017-0759-z

Keywords

Navigation