Skip to main content
Log in

Development of highly polymorphic SNP markers from the complexity reduced portion of maize [Zea mays L.] genome for use in marker-assisted breeding

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The duplicated and the highly repetitive nature of the maize genome has historically impeded the development of true single nucleotide polymorphism (SNP) markers in this crop. Recent advances in genome complexity reduction methods coupled with sequencing-by-synthesis technologies permit the implementation of efficient genome-wide SNP discovery in maize. In this study, we have applied Complexity Reduction of Polymorphic Sequences technology (Keygene N.V., Wageningen, The Netherlands) for the identification of informative SNPs between two genetically distinct maize inbred lines of North and South American origins. This approach resulted in the discovery of 1,123 putative SNPs representing low and single copy loci. In silico and experimental (Illumina GoldenGate (GG) assay) validation of putative SNPs resulted in mapping of 604 markers, out of which 188 SNPs represented 43 haplotype blocks distributed across all ten chromosomes. We have determined and clearly stated a specific combination of stringent criteria (>0.3 minor allele frequency, >0.8 GenTrainScore and >0.5 Chi_test100 score) necessary for the identification of highly polymorphic and genetically stable SNP markers. Due to these criteria, we identified a subset of 120 high-quality SNP markers to leverage in GG assay-based marker-assisted selection projects. A total of 32 high-quality SNPs represented 21 haplotypes out of 43 identified in this study. The information on the selection criteria of highly polymorphic SNPs in a complex genome such as maize and the public availability of these SNP assays will be of great value for the maize molecular genetics and breeding community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aminafshar M, Amirina C, Vaez Torshizi R (2008) Genetic diversity in buffalo population of Guilan using microsatellite markers. J Anim Vet Adv 7:1499–1502

    CAS  Google Scholar 

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376

    Article  PubMed  Google Scholar 

  • Barbazuk WB, Emrich SJ, Chen HD, Schnable P (2007) SNP discovery via 454 transcriptome sequencing. Plant J 51:910–918

    Article  CAS  PubMed  Google Scholar 

  • Batley J, Barker G, O’Sullivan H, Edwards KJ, Edwards D (2003) Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. Plant Physiol 132:84–91

    Article  CAS  PubMed  Google Scholar 

  • Chagné D, Batley J, Edwards D, Forster JW (2007) Single nucleotide polymorphisms genotyping in plants. In: Oraguzie NC, Rikkerink EHA, Susan E, Gardiner SE, De Silva HN (eds) Association mapping in plants. Springer, New York, pp 77–94

    Chapter  Google Scholar 

  • Ching A, Caldwell KD, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski AJ (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:19

    Article  PubMed  Google Scholar 

  • Chen X, Levine L, Kwok P-Y (1999) Fluorescence polarization in homogeneous nucleic acid analysis. Genome Res 9:492–498

    CAS  PubMed  Google Scholar 

  • Devlin B, Risch N (1995) A comparison of linkage disequilibrium measures for fine scale mapping. Genomics 29:311–322

    Article  CAS  PubMed  Google Scholar 

  • Edwards KJ, Poole RL, Barker GLA (2008) SNP discovery in plants. In: Henry RJ (ed) Plant genotyping II: SNP technology. CABI, Wallingford, Oxfordshire, pp 1–29

    Chapter  Google Scholar 

  • Emberton J, Ma J, Yuan Y, SanMiguel P, Bennetzen JL (2005) Gene enrichment in maize with hypomethylated partial restriction (HMPR) libraries. Genome Res 15:1441–1446

    Article  CAS  PubMed  Google Scholar 

  • Fan JB, Oliphant A, Shen R, Kermani BG, Garcia F, Gunderson KL, Hansen M, Steemers F, Butler SL, Deloukas P, Galver L, Hunt S, McBride C, Bibikova M, Rubano T, Chen J, Wickham E, Doucet D, Chang W, Campbell D, Zhang B, Kruglyak S, Bentley D, Haas J, Rigault P, Zhou L, Stuelpnagel J, Chee MS (2003) Highly parallel SNP genotyping. Cold Spring Harb Symp Quant Biol 68:69–78

    Article  CAS  PubMed  Google Scholar 

  • Fu H, Dooner HK (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci USA 99:9573–9578

    CAS  PubMed  Google Scholar 

  • Fu Y, Emrich SJ, Guo L, Wen TJ, Ashlock DA, Aluru S, Schnable PS (2005) Quality assessment of maize assembled genomic islands (MAGIs) and large-scale experimental verification of predicted genes. Proc Natl Acad Sci USA 102:12282–12287

    Article  CAS  PubMed  Google Scholar 

  • Ganal M, Altmann T, Rőder MS (2009) SNP identification in crop plants. Curr Opin Biotechnol 12:211–217

    CAS  Google Scholar 

  • Gaut BS, Doebley JF (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA 96:6809–6814

    Article  Google Scholar 

  • Gore MA, Wright MH, Ersoz ES, Bouffard P, Szekeres ES, Jarvie TP, Hurwitz BL, Narechania A, Harkins TT, Grills GS, Ware DH, Buckler ES (2009a) Large-scale discovery of gene-enriched SNPs. The Plant Genome 2:121–133

    Article  CAS  Google Scholar 

  • Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009b) A first-generation haplotype map of maize. Science 326:1115

    Article  CAS  PubMed  Google Scholar 

  • Hedrick PW (2000) Genetics of populations. Jones and Barlett, Sudbury, MA

    Google Scholar 

  • Hyten DL, Song Q, Choi I-Y, Yoon M-S, Specht JE, Matukumalli LK, Nelson RL, Shoemaker RC, Young ND, Cregan PB (2008) High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. Theor Appl Genet 116:945–952

    Article  CAS  PubMed  Google Scholar 

  • Illumina SNP genotyping (2006) Infinium Assay II Workflow. URL:http://www.illumina.com/Documents/products/workflows/workflow_infinium_ii.pdf

  • Jones E, Chu WC, Ayele M, Ho J, Bruggeman E, Yourstone K, Rafalksi A, Smith OS, McMullen MD, Bezawada C, Warren L, Babayev J, Basu S, Smith S (2009) Development of single nucleotide polymorphism (SNP) markers for use in commercial maize (Zea mais L.) germplasm. Mol Breeding 24:165–176

    Article  CAS  Google Scholar 

  • Livak KJ, Flood SJ, Marmaro J, Giusti W, Deetz K (1995) Oligonucleotide with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. Genome Res 4:357–362

    Article  CAS  Google Scholar 

  • Mardis ER (2007) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141

    Google Scholar 

  • Meyers BC, Tingey SV, Morgante M (2001) Abundance, distribution and transcriptional activity of repetitive elements in the maize genome. Genome Res 11:1660–1676

    Article  CAS  PubMed  Google Scholar 

  • Morozova O, Marra MA (2008) Application of next-generation sequencing technologies in functional genomics. Genomics 92:255–264

    Article  CAS  PubMed  Google Scholar 

  • Okou DT, Steinberg KM, Middle C, Cutler DJ, Albert TJ, Zwick ME (2007) Microarray-based genomic selection for high-throughput resequencing. Nat Methods 4:907–909

    Article  CAS  PubMed  Google Scholar 

  • Olivier M (2005) The Invader® assay for SNP genotyping. Mutat Res 573:103–110

    CAS  PubMed  Google Scholar 

  • Ott J (2001) Program HET Version 1.8, utility programs for genetic analysis of linkage. Rockfeller University, NY

  • Palmer LE, Rabinowicz PD, O’Shaughnessy A, Balija V, Nascimento L, Dike S, de la Bastide M, Martienssen RA, McCombie WR (2003) Maize genome sequencing by methylation filtration. Science 302:2115–2117

    Article  PubMed  Google Scholar 

  • Phillips MS, Lawrence R, Sachidanandam R, Morris AP, Balding DJ, Donaldson MA, Studebaker JF, Ankener WM, Alfisi SV, Kuo F-S, Camisa AL, Pazorov V, Scott KE, Carey BJ, Faith J, Katari G, Bhatti HA, Cyr JM, Derohannessian V, Elosua C, Forman AM, Grecco NM, Hock CR, Kuebler JM, Lathrop JA, Mockler MA, Nachtman EP, Restine SL, Varde SA, Hozza MJ, Gelfand CA, Broxholme J, Abecasis GR, Boyce-Jacino MT, Cardon LR (2003) Chromosome-wide distribution of haplotype blocks and the role of recombination hot spots. Nat Genet 33:382–387

    Article  CAS  PubMed  Google Scholar 

  • Rafalski A (2002) Novel genetic mapping tools in plant: SNPs and LD-based approaches. Plant Sci 162:329–333

    Article  CAS  Google Scholar 

  • Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:11479–11484

    Article  CAS  PubMed  Google Scholar 

  • Rostoks N, Ramsay L, Mackenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF, Graner A, Close TJ, Waugh R (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA 103:18656–18661

    Article  CAS  PubMed  Google Scholar 

  • Schőn CC, Utz HF, Grob S, Truberg B, Openshaw S, Melchinger AE (2003) Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits. Genetics 167:485–498

    Article  Google Scholar 

  • Stuart CN, Via LE (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR application. Biotechniques 14:748–750

    Google Scholar 

  • Tian F, Stevensa NM, Buckler ES (2009) Tracking footprints of maize domestication and evidence for a massive selective sweep on chromosome 10. Proc Natl Acad Sci USA 106(Suppl 1):9979–9986

    Article  CAS  PubMed  Google Scholar 

  • van Ooijen JW, Voorrips RE (2001) JoinMap® 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands

    Google Scholar 

  • van Orsouw N, Hogers RC, Janssen A, Yalcin F, Snoeijers S, Verstege E, Scheiders H, van der Poel H, van Oeveren J, Verstegen H, van Eijk MJT (2007) Complexity reduction of polymorphic sequences (CRoPS™): a novel approach for large-scale polymorphism discovery in complex genomes. PLoS One 11:1–10

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, SanMiguel PJ, Bennetzen JL (2003) High-C0t sequence analysis of the maize genome. Plant J 34:249–255

    Article  CAS  PubMed  Google Scholar 

  • Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD, Gaut BS (2005) The effects of artificial selection of the maize genome. Science 308:1310–1314

    Article  CAS  PubMed  Google Scholar 

  • Wright WT, Heggarty SV, Young IS, Nicholls DP, Whittall R, Humphries SE, Graham CA (2008) Multiplex MassARRAY spectrometry (iPLEX) produces a fast and economical test for 56 familial hypercholesterolaemia-causing mutations. Clin Genet 74:463–468

    Article  CAS  PubMed  Google Scholar 

  • Zhu YL, Song QL, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB (2003) Single-nucleotide polymorphisms in soybean. Genetics 163:1123–1134

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Sarah Bohl and Jan Eric Backlund of Trait Genetics and Technologies (TG&T) Department of Dow AgroSciences for providing us with the DNA of 86 maize inbred lines. We also thank Rebecca Aus of TG&T for genotyping the 6000-sample marker application project. Our special thanks go to Ryan Gibson of TG&T for proofreading and editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jafar A. Mammadov.

Additional information

Communicated by T. Luebberstedt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 17 kb)

Supplementary material 2 (XLS 58 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mammadov, J.A., Chen, W., Ren, R. et al. Development of highly polymorphic SNP markers from the complexity reduced portion of maize [Zea mays L.] genome for use in marker-assisted breeding. Theor Appl Genet 121, 577–588 (2010). https://doi.org/10.1007/s00122-010-1331-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1331-8

Keywords

Navigation