Skip to main content
Log in

Discovery of a novel cytoplasmic male-sterility and its restorer lines in radish (Raphanus sativus L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

A male-sterile (MS) radish (Raphanus sativus L.) was found in an accession collected from Uzbekistan. Unlike Ogura MS radishes in which no pollen grain is typically visible during anthesis, a small number of pollen grains stuck together in the dehiscing anthers was observed in the newly identified MS radish. Fluorescein diacetate tests and scanning electron micrographs showed that pollen grains in the new MS radish were severely deformed and non-viable. Cytological examination of pollen development stages showed a clear difference in the defective stage from that seen in Ogura male-sterility. Reciprocal cross-pollination with diverse male-fertile lines indicated that pollen grains of the new MS radish were completely sterile, and the female organs were fully fertile. When the new MS radish and Ogura MS lines were cross-pollinated with a set of eight breeding lines, all F1 progeny originating from crosses with the new MS radish were male-sterile. In contrast, most of the F1 progeny resulting from crosses with Ogura MS lines were male-fertile. These results demonstrated that factors associated with induction of the newly identified male-sterility are different from those of Ogura male-sterility. The lack of restorer lines for the newly identified male-sterility led us to predict that it might be a complete cytoplasmic male-sterility without restorer-of-fertility genes in nuclear genomes. However, cross-pollination with more diverse radish germplasm identified one accession introduced from Russia that could completely restore fertility, proving the existence of restorer-of-fertility gene(s) for the new male-sterility. Meanwhile, the PCR amplification profile of molecular markers for the classification of radish mitochondrial genome types revealed that the new MS radish contained a novel mitotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdelnoor RV, Yule R, Elo A, Christensen AC, Meyer-Gauen G, Mackenzie SA (2003) Substoichiometric shifting in the plant mitochondrial genome is influenced by a gene homologous to MutS. Proc Natl Acad Sci USA 100:5968–5973

    Article  PubMed  CAS  Google Scholar 

  • Albert B, Godelle B, Gouyon PH (1998) Evolution of the plant mitochondrial genome: dynamics of duplication and deletion of sequences. J Mol Evol 46:155–158

    Article  PubMed  CAS  Google Scholar 

  • Arrieta-Montiel M, Lyznik A, Woloszynska M, Janska H, Tohme J, Mackenzie S (2001) Tracing evolutionary and developmental implications of mitochondrial stoichiometric shifting in the common bean. Genetics 158:851–864

    PubMed  CAS  Google Scholar 

  • Bannerot H, Loulidard L, Cauderon MY, Tempe J (1974) Transfer of cytoplasmic male sterility from Raphanus sativus to Brassica oleracea. Proc Eucarpia Meet Cruciferae:52–54

  • Bannerot H, Boulidard L, Chupeau Y (1977) Unexpected difficulties met with the radish cytoplasm in Brassica oleracea. Eucarpia Cruciferae Newsl:16

  • Bellaoui M, Martin-Canadell A, Pelletier G, Budar F (1998) Low-copy-number molecules are produced by recombination, actively maintained and can be amplified in the mitochondrial genome of Brassicaceae: relationship to reversion of the male sterile phenotype in some cybrids. Mol Gen Genet 257:177–185

    Article  PubMed  CAS  Google Scholar 

  • Bentolila S, Alfonso AA, Hanson MR (2002) A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc Natl Acad Sci USA 99:10887–10892

    Article  PubMed  CAS  Google Scholar 

  • Bonhomme S, Budar F, Ferault M, Pelletier G (1991) A 2.5 kb Nco I fragment of Ogura radish mitochondrial DNA is correlated with cytoplasmic male-sterility in Brassica cybrids. Curr Genet 19:121–127

    Article  CAS  Google Scholar 

  • Brown GG, Formanova N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J, Cheung WY, Landry BS (2003) The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J 35:262–272

    Article  PubMed  CAS  Google Scholar 

  • Budar F, Touzet P, De Paepe R (2003) The nucleo-mitochondrial conflict in cytoplasmic male sterilities revised. Genetica 117:3–16

    Article  PubMed  CAS  Google Scholar 

  • Cui X, Wise RP, Schnable PS (1996) The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science 272:1334–1336

    Article  PubMed  CAS  Google Scholar 

  • Desloire S, Gherbi H, Laloui W, Marhadour S, Clouet V, Cattolico L, Falentin C, Giancola S, Renard M, Budar F, Small I, Caboche M, Delourme R, Bendahmane A (2003) Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Rep 4:588–594

    Article  PubMed  CAS  Google Scholar 

  • Dickson MH (1985) Male sterile persistent white curd cauliflower NY 7642A and its maintainer NY 7642B. HortScience 20:957

    Google Scholar 

  • Fauron CMR, Havlik M, Brettell RIS (1990) The mitochondrial genome organization of a maize fertile cmsT revertant line is generated through recombination between two sets of repeats. Genetics 124:423–428

    PubMed  CAS  Google Scholar 

  • Gothandam KM, Kim E, Cho H, Chung Y (2005) OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis. Plant Mol Biol 58:421–433

    Article  PubMed  CAS  Google Scholar 

  • Grelon M, Budar F, Bonhomme S, Pelletier G (1994) Ogura cytoplasmic male-sterility (CMS)-associated orf138 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica cybrids. Mol Gen Genet 243:540–547

    Article  PubMed  CAS  Google Scholar 

  • Handa H (2003) The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucleic Acids Res 31:5907–5916

    Article  PubMed  CAS  Google Scholar 

  • Hanson MR (1991) Plant mitochondrial mutations and male sterility. Annu Rev Genet 25:461–486

    Article  PubMed  CAS  Google Scholar 

  • Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16:S154–S169

    Article  PubMed  CAS  Google Scholar 

  • Heath DW, Earle ED, Dickson MH (1994) Introgressing cold-tolerant Ogura cytoplasm from rapeseed into Pak Choi and Chinese cabbage. HortScience 29:202–203

    Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1970) Evaluation of pollen viability by enzymatically induced fluorescence: intracellular hydrolysis of fluorescein diacetate. Stain Technol 45:115–120

    PubMed  CAS  Google Scholar 

  • Janska H, Sarria R, Woloszynska M, Arrieta-Montiel M, Mackenzie SA (1998) Stoichiometric shifts in the common bean mitochondrial genome leading to male sterility and spontaneous reversion to fertility. Plant Cell 10:1163–1180

    Article  PubMed  CAS  Google Scholar 

  • Jarl CI, van Grinsven M, van den Mark F (1989) Correction of chlorophyll-defective male-sterile winter oilseed rape (Brassica napus) through organelle exchange: molecular analysis of the cytoplasm of parental lines and corrected progeny. Theor Appl Genet 77:135–141

    Article  CAS  Google Scholar 

  • Jones HA, Clarke A (1943) Inheritance of male sterility in the onion and the production of hybrid seed. Proc Am Soc Hortic Sci 43:189–194

    Google Scholar 

  • Kim S, Lim H, Park S, Cho K, Sung S, Oh D, Kim K (2007) Identification of a novel mitochondrial genome type and development of molecular makers for cytoplasm classification in radish (Raphanus sativus L.). Theor Appl Genet 115:1137–1145

    Article  PubMed  CAS  Google Scholar 

  • Knoop V (2004) The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective. Curr Genet 46:123–139

    Article  PubMed  CAS  Google Scholar 

  • Koizuka N, Imai R, Fujimoto H, Hayakawa T, Kimura Y, Kohno-Murase J, Sakai T, Kawasaki S, Imamura J (2003) Genetic characterization of a pentatricopeptide repeat protein gene, orf687, that restores fertility in the cytoplasmic male-sterile Kosena radish. Plant J 34:407–415

    Article  PubMed  CAS  Google Scholar 

  • Komori T, Ohta S, Murai N, Takakura Y, Kuraya Y, Suzuki S, Hiei Y, Imaseki H, Nitta N (2004) Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L.). Plant J 37:315–325

    Article  PubMed  CAS  Google Scholar 

  • Kotera E, Tasaka M, Shikanai T (2005) A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts. Nature 433:326–330

    Article  PubMed  CAS  Google Scholar 

  • Kubo T, Nishizawa S, Sugawara A, Itchoda N, Estiati A, Mikami T (2000) The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNAcys(GCA). Nucleic Acids Res 28:2571–2576

    Article  PubMed  CAS  Google Scholar 

  • Leino M, Landgren M, Glimelius K (2005) Alloplasmic effects on mitochondrial transcriptional activity and RNA turnover result in accumulated transcript of Arabidopsis orfs in cytoplasmic male-sterile Brassica napus. Plant J 42:469–480

    Article  PubMed  CAS  Google Scholar 

  • Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Le Ret M, Martin-Magniette M, Mireau H, Peeters N, Renou J, Szurek B, Taconnat L, Small I (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16:2089–2103

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie SA, Chase CD (1990) Fertility restoration is associated with loss of a portion of the mitochondrial genome in cytoplasmic male-sterile common bean. Plant Cell 2:905–912

    Article  PubMed  CAS  Google Scholar 

  • Makaroff CA, Palmer JD (1988) Mitochondrial DNA rearrangements and transcriptional alterations in the male-sterile cytoplasm of Ogura radish. Mol Cell Biol 8:1474–1480

    PubMed  CAS  Google Scholar 

  • Menczel L, Morgan A, Brown S, Maliga P (1987) Fusion-mediated combination of Ogura-type cytoplasmic male sterility with Brassica napus plastids using X-irradiated CMS protoplasts. Plant Cell Rep 6:98–101

    Google Scholar 

  • Nahm S, Lee H, Lee S, Joo G, Harn C, Yang S, Min B (2005) Development of a molecular marker specific to a novel CMS line in radish (Raphanus sativus L.). Theor Appl Genet 111:1191–1200

    Article  PubMed  CAS  Google Scholar 

  • Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G, Nakazono M, Kirai A, Kadowaki K (2002) The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol Genet Genomics 268:434–445

    Article  PubMed  CAS  Google Scholar 

  • Ogura H (1968) Studies on the new male sterility in Japanese radish, with special reference to the utilization of this sterility towards the practical raising of hybrid seeds. Mem Fac Agric Kagoshima Univ 6:39–78

    Google Scholar 

  • Oldenburg DJ, Bendich AJ (2001) Mitochondrial DNA from the Liverwort Marchantia polymorpha: circularly permuted linear molecules, head-to-tail concatemers, and a 5′ protein. J Mol Biol 310:549–562

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD (1988) Intraspecific variation and multicircularity in Brassica mitochondrial DNAs. Genetics 118:341–351

    PubMed  CAS  Google Scholar 

  • Palmer JD, Herbon LA (1987) Unicircular structure of the Brassica hirta mitochondrial genome. Curr Genet 11:565–570

    Article  PubMed  CAS  Google Scholar 

  • Pellan-Delourme R, Renard M (1988) Cytoplasmic male sterility in rapeseed (Brassica napus L.): female fertility of restored rapeseed with “Ogura” and cybrids cytoplasms. Genome 30:234–238

    Article  Google Scholar 

  • Pelletier G, Primard C, Vedel F, Chetrit P, Remy R, Rousselle P, Renard M (1983) Intergeneric cytoplasmic hybridization in Cruciferae by protoplast fusion. Mol Gen Genet 191:244–250

    Article  CAS  Google Scholar 

  • Primard-Brisset C, Poupard JP, Horvais R, Eber F, Pelletier G, Renard M, Delourme R (2005) A new combined double low restorer line for the Ogu-INRA cms in rapeseed (Brassica napus L.). Theor Appl Genet 111:736–746

    Article  PubMed  CAS  Google Scholar 

  • Sakai T, Imamura J (1993) Evidence for a mitochondrial sub-genome containing radish atpA in a Brassica napus cybrid. Plant Sci 90:95–103

    Article  CAS  Google Scholar 

  • Sakai T, Liu HJ, Iwabuchi M, Kohno-Murase J, Imamura J (1996) Introduction of a gene from fertility restored radish (Raphanus sativus) into Brassica napus by fusion of X-irradiated protoplasts from a radish restorer line and iodacetoamide-treated protoplasts from a cytoplasmic male-sterile cybrid of B. napus. Theor Appl Genet 93:373–379

    Article  CAS  Google Scholar 

  • Schnable PS, Wise RP (1998) The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci 3:175–180

    Article  Google Scholar 

  • Shinada T, Kikuchi Y, Fujimoto R, Kishitani S (2006) An alloplasmic male-sterile line of Brassica oleracea haboring the mitochondria from Diplotaxis muralis expresses a novel chimeric open reading frame, orf72. Plant Cell Physiol 47:549–553

    Article  PubMed  CAS  Google Scholar 

  • Small ID, Peeters N (2000) The PPR motif- a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci 25:45–47

    Article  Google Scholar 

  • Small I, Suffolk R, Leaver CJ (1989) Evolution of plant mitochondrial genomes via substoichiometric intermediates. Cell 58:69–76

    Article  PubMed  CAS  Google Scholar 

  • Su Y, Zhao S, He Q, Shi H, An Z, Lang F, Zhang Y (1995) Study on morphology of microsporogenesis in male sterile line of radish (Raphanus sativus L.). Acta Hort 402:173–178

    Google Scholar 

  • Ullrich H, Lättig K, Brennicke A, Knoop V (1997) Mitochondrial DNA variations and nuclear RFLPs reflect different genetic similarities among 23 Arabidopsis thaliana ecotypes. Plant Mol Biol 33:37–45

    Article  PubMed  CAS  Google Scholar 

  • Unseld M, Marienfeld JR, Brandt P, Brennicke A (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366, 924 nucleotides. Nat genet 15:57–61

    Article  PubMed  CAS  Google Scholar 

  • Ward BL, Anderson RS, Bendich AJ (1981) The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell 25:793–803

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (Code#20080401034012) from BioGreen 21 Program, Rural Development Administration, and a grant (307001-05-02-SB010) from Technology Development Program for Agriculture and Forestry, Ministry of Agriculture and Forestry, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunggil Kim.

Additional information

Communicated by I. L. Goldman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, YP., Park, S., Lim, C. et al. Discovery of a novel cytoplasmic male-sterility and its restorer lines in radish (Raphanus sativus L.). Theor Appl Genet 117, 905–913 (2008). https://doi.org/10.1007/s00122-008-0830-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0830-3

Keywords

Navigation