Skip to main content

Advertisement

Log in

Androgen-dependent tissue factor pathway inhibitor regulating protein: a review of its peripheral actions and association with cardiometabolic diseases

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The first genome-wide association study on coronary artery disease (CAD) in the Han Chinese population identified C6orf105 as a susceptibility gene. The C6orf105 gene was later found to encode for a protein that regulates tissue factor pathway inhibitor (TFPI) expression in endothelial cells in an androgen-dependent manner, and the novel protein was thus termed androgen-dependent TFPI-regulating protein (ADTRP). Since the identification of ADTRP, there have been several studies associating genetic variants on the ADTRP gene with CAD risk, as well as research providing mechanistic insights on this novel protein and its functional role. ADTRP is a membrane protein, whose expression is upregulated by androgen, GATA-binding protein 2, oxidized low-density lipoprotein, peroxisome proliferator‐activated receptors, and low-density lipoprotein receptors. ADTRP regulates multiple downstream targets involved in coagulation, inflammation, endothelial function, and vascular integrity. In addition, ADTRP functions as a fatty acid esters of hydroxy fatty acid (FAHFA)-specific hydrolase that is involved in energy metabolism. Current evidence suggests that ADTRP may play a role in the pathogenesis of atherosclerosis, CAD, obesity, and metabolic disorders. This review summarizes the current literature on ADTRP, with a focus on the peripheral actions of ADTRP, including expression, genetic variations, signaling pathways, and function. The evidence linking ADTRP and cardiometabolic diseases will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

Abbreviations

ABPP:

Activity-based protein profiling

ADTRP:

Androgen-dependent tissue factor pathway inhibitor regulating protein

AIG1:

Androgen-induced gene 1

AKT:

AKT serine/threonine kinase

ApoB:

Apolipoprotein B

ARE:

Androgen response element

BAT:

Brown adipose tissue

CAD:

Coronary artery disease

CASP7:

Caspase 7

CCND1:

Cyclin D1

CDK4:

Cyclin-dependent kinase 4

CDKN1A:

Cyclin-dependent kinase inhibitor 1A

CD36:

Cluster of differentiation 36

ChIP-seq:

Chromatin immunoprecipitation-sequencing

CI:

Confidence interval

FAHFA:

Fatty acid esters of hydroxy fatty acid

FP:

Fluorophosphonate

FVIIc:

Factor VII coagulant activity

FXa:

Factor Xa

GATA2:

GATA-binding protein 2

GLP-1:

Glucagon-like peptide 1

GWAS:

Genome-wide association study

HUVEC:

Human umbilical vein endothelial cell

KO:

Knockout

LDL:

Low-density lipoprotein

LDLR:

Low-density lipoprotein receptor

LOX-1:

Lectin-like oxidized low-density lipoprotein receptor-1

LRP6:

Low-density lipoprotein receptor related protein 6

MI:

Myocardial infarction

MIA3/TANGO1:

Melanoma inhibitory activity protein 3/Transport and Golgi organization protein 1

MMP9:

Matrix metallopeptidase 9

myrAKT1:

Myristoylated human AKT1

NF-κB:

Nuclear factor kappa B

OR:

Odds ratio

ox-LDL:

Oxidized low-density lipoprotein

PAHSA:

Palmitic acid hydroxy stearic acid

PBMC:

Peripheral blood mononuclear cell

PDCD2:

Programmed cell death 2

PI3K:

Phosphatidylinositol 3-kinase

PI3KR3:

Phosphatidylinositol 3-kinase regulatory subunit gamma

POU1F1:

POU domain class 1 transcription factor 1

PPAR:

Peroxisome proliferator‐activated receptor

qRT-PCR:

Quantitative reverse transcription-polymerase chain reaction

shRNA:

Short hairpin ribonucleic acid

siRNA:

Small interfering ribonucleic acid

SNP:

Single-nucleotide polymorphism

TF-FVIIa:

Tissue factor-factor VIIa

TFPI:

Tissue factor pathway inhibitor

WAT:

White adipose tissue

References

  1. Chang L-S, Vaduganathan M, Plutzky J, Aroda VR (2019) Bridging the gap for patients with diabetes and cardiovascular disease through cardiometabolic collaboration. Curr Diab Rep 19:157. https://doi.org/10.1007/s11892-019-1260-0

    Article  PubMed  Google Scholar 

  2. Miranda JJ, Barrientos-Gutiérrez T, Corvalan C et al (2019) Understanding the rise of cardiometabolic diseases in low- and middle-income countries. Nat Med 25:1667–1679. https://doi.org/10.1038/s41591-019-0644-7

    Article  CAS  PubMed  Google Scholar 

  3. Virani SS, Alonso A, Benjamin EJ et al (2020) Heart disease and stroke statistics—2020 update: a report from the American Heart Association Circulation 141. https://doi.org/10.1161/CIR.0000000000000757

  4. Mast AE (2016) Tissue factor pathway inhibitor: multiple anticoagulant activities for a single protein. Arterioscler Thromb Vasc Biol 36:9–14. https://doi.org/10.1161/ATVBAHA.115.305996

    Article  CAS  PubMed  Google Scholar 

  5. Dahm A, van Hylckama VA, Bendz B et al (2003) Low levels of tissue factor pathway inhibitor (TFPI) increase the risk of venous thrombosis. Blood 101:4387–4392. https://doi.org/10.1182/blood-2002-10-3188

    Article  CAS  PubMed  Google Scholar 

  6. Westrick RJ, Bodary PF, Xu Z et al (2001) Deficiency of Tissue Factor Pathway Inhibitor Promotes Atherosclerosis and Thrombosis in Mice. Circulation 103:3044–3046. https://doi.org/10.1161/hc2501.092492

    Article  CAS  PubMed  Google Scholar 

  7. Lupu C, Zhu H, Popescu NI et al (2011) Novel protein ADTRP regulates TFPI expression and function in human endothelial cells in normal conditions and in response to androgen. Blood 118:4463–4471. https://doi.org/10.1182/blood-2011-05-355370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dechamethakun S, Ikeda S, Arai T et al (2014) Associations between the CDKN2A/B, ADTRP and PDGFD polymorphisms and the development of coronary atherosclerosis in Japanese patients. J Atheroscler Thromb 21:680–690. https://doi.org/10.5551/jat.22640

    Article  CAS  PubMed  Google Scholar 

  9. Guo C-Y, Gu Y, Li L et al (2012) Association of SNP Rs6903956 on Chromosome 6p24.1 with angiographical characteristics of coronary atherosclerosis in a chinese population. PLoS ONE 7:e43732. https://doi.org/10.1371/journal.pone.0043732

  10. Tayebi N, Ke T, Foo JN et al (2013) Association of single nucleotide polymorphism rs6903956 on chromosome 6p24.1 with coronary artery disease and lipid levels in different ethnic groups of the Singaporean population. Clin Biochem 46:755–759. https://doi.org/10.1016/j.clinbiochem.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  11. Wang F, Xu C-Q, He Q et al (2011) Genome-wide association identifies a susceptibility locus for coronary artery disease in the Chinese Han population. Nat Genet 43:345–349. https://doi.org/10.1038/ng.783

    Article  CAS  PubMed  Google Scholar 

  12. Luo C, Wang F, Qin S et al (2016) Coronary artery disease susceptibility gene ADTRP regulates cell cycle progression, proliferation, and apoptosis by global gene expression regulation. Physiol Genomics 48:554–564. https://doi.org/10.1152/physiolgenomics.00028.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Patel MM, Behar AR, Silasi R et al (2018) Role of ADTRP (androgen-dependent tissue factor pathway inhibitor regulating protein) in vascular development and function. J Am Heart Assoc 7:e010690. https://doi.org/10.1161/JAHA.118.010690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fagerberg L, Hallström BM, Oksvold P et al (2014) Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics 13:397–406. https://doi.org/10.1074/mcp.M113.035600

    Article  CAS  PubMed  Google Scholar 

  15. Chinetti-Gbaguidi G, Copin C, Derudas B et al (2015) The coronary artery disease-associated gene C6ORF105 is expressed in human macrophages under the transcriptional control of PPARγ. FEBS Lett 589:461–466. https://doi.org/10.1016/j.febslet.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  16. Ooi DSQ, Ong SM, Eng MH et al (2020) Detection of ADTRP in circulation and its role as a novel biomarker for coronary artery disease. PLoS ONE 15:e0237074. https://doi.org/10.1371/journal.pone.0237074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Parsons WH, Kolar MJ, Kamat SS et al (2016) AIG1 and ADTRP are atypical integral membrane hydrolases that degrade bioactive FAHFAs. Nat Chem Biol 12:367–372. https://doi.org/10.1038/nchembio.2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Luo C, Pook E, Tang B et al (2017) Androgen inhibits key atherosclerotic processes by directly activating ADTRP transcription. Biochim Biophys Acta Mol Basis Dis 1863:2319–2332. https://doi.org/10.1016/j.bbadis.2017.06.015

    Article  CAS  PubMed  Google Scholar 

  19. Luo C, Tang B, Qin S et al (2021) GATA2 regulates the CAD susceptibility gene ADTRP rs6903956 through preferential interaction with the G allele. Mol Genet Genomics MGG. https://doi.org/10.1007/s00438-021-01782-1

    Article  PubMed  Google Scholar 

  20. Izadpanah P, Khabbzi E, Erfanian S et al (2021) Case-control study on the association between the GATA2 gene and premature myocardial infarction in the Iranian population. Herz 46:71–75. https://doi.org/10.1007/s00059-019-04841-x

    Article  PubMed  Google Scholar 

  21. Luo C, Wang D, Huang W et al (2021) Feedback regulation of coronary artery disease susceptibility gene ADTRP and LDL receptors LDLR/CD36/LOX-1 in endothelia cell functions involved in atherosclerosis. Biochim Biophys Acta BBA - Mol Basis Dis 1867:166130. https://doi.org/10.1016/j.bbadis.2021.166130

    Article  CAS  Google Scholar 

  22. Defour M, van Weeghel M, Hermans J, Kersten S (2021) Hepatic ADTRP overexpression does not influence lipid and glucose metabolism. Am J Physiol-Cell Physiol ajpcell.00185.2021. https://doi.org/10.1152/ajpcell.00185.2021

  23. Gensini GG (1983) A more meaningful scoring system for determining the severity of coronary heart disease. Am J Cardiol 51:606. https://doi.org/10.1016/S0002-9149(83)80105-2

    Article  CAS  PubMed  Google Scholar 

  24. Chang X, Chin H-L, Quek S-C et al (2017) The genetic variation rs6903956 in the novel androgen-dependent tissue factor pathway inhibitor regulating protein (ADTRP) gene is not associated with levels of plasma coagulation factors in the Singaporean Chinese. Thromb J 15:1. https://doi.org/10.1186/s12959-016-0124-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu X, Wang L, Chen S et al (2012) Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease. Nat Genet 44:890–894. https://doi.org/10.1038/ng.2337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang L, Li J, Duan F et al (2014) Interaction of type 2 diabetes mellitus with Chromosome 9p21 rs10757274 polymorphism on the risk of myocardial infarction: a case–control study in Chinese population BMC Cardiovasc Disord 14. https://doi.org/10.1186/1471-2261-14-170

  27. The 1000 Genomes Project Consortium (2015) A global reference for human genetic variation. Nature 526:68–74. https://doi.org/10.1038/nature15393

    Article  CAS  Google Scholar 

  28. Lanktree MB, Hegele RA (2009) Gene-gene and gene-environment interactions: new insights into the prevention, detection and management of coronary artery disease. Genome Med 1:28. https://doi.org/10.1186/gm28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753. https://doi.org/10.1038/nature08494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meng J, Tan W, Zhu Y et al (2015) A coronary artery disease-associated SNP rs6903956 contributed to asymptomatic hyperuricemia susceptibility in Han Chinese. Lipids Health Dis 14:33. https://doi.org/10.1186/s12944-015-0026-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu X, Zhang M, Shan H-W et al (2016) Association of single nucleotide polymorphism rs2076185 in chromosome 6P24.1 with premature coronary artery diseases in Chinese Han population. J Geriatr Cardiol JGC 13:138–144. https://doi.org/10.11909/j.issn.1671-5411.2016.02.008

  32. Huang E-W, Peng L-Y, Zheng J-X et al (2015) Common Variants in Promoter of ADTRP Associate with Early-Onset Coronary Artery Disease in a Southern Han Chinese Population. PLoS ONE 10:e0137547. https://doi.org/10.1371/journal.pone.0137547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Erikci Ertunc M, Kok BP, Parsons WH et al (2020) AIG1 and ADTRP are endogenous hydrolases of fatty acid esters of hydroxy fatty acids (FAHFAs) in mice. J Biol Chem 295:5891–5905. https://doi.org/10.1074/jbc.RA119.012145

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang L, Wang X, Wang L et al (2018) Identification of a new adtrp1-tfpi regulatory axis for the specification of primitive myelopoiesis and definitive hematopoiesis. FASEB J Off Publ Fed Am Soc Exp Biol 32:183–194. https://doi.org/10.1096/fj.201700166RR

    Article  CAS  Google Scholar 

  35. Winckers K, ten Cate H, Hackeng TM (2013) The role of tissue factor pathway inhibitor in atherosclerosis and arterial thrombosis. Blood Rev 27:119–132. https://doi.org/10.1016/j.blre.2013.03.001

    Article  CAS  PubMed  Google Scholar 

  36. Chistiakov D, Myasoedova V, Melnichenko A et al (2018) Role of androgens in cardiovascular pathology. Vasc Health Risk Manag 14:283–290. https://doi.org/10.2147/VHRM.S173259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. De Pergola G, Pannacciulli N, Ciccone M et al (2003) Free testosterone plasma levels are negatively associated with the intima-media thickness of the common carotid artery in overweight and obese glucose-tolerant young adult men. Int J Obes 27:803–807. https://doi.org/10.1038/sj.ijo.0802292

    Article  CAS  Google Scholar 

  38. Yang Y, Lv X, Huang W et al (2005) Study of androgen and atherosclerosis in old-age male. J Zhejiang Univ Sci 6B:931–935. https://doi.org/10.1631/jzus.2005.B0931

    Article  CAS  Google Scholar 

  39. Cai J-J, Wen J, Jiang W-H et al (2016) Androgen actions on endothelium functions and cardiovascular diseases. J Geriatr Cardiol JGC 13:183–196. https://doi.org/10.11909/j.issn.1671-5411.2016.02.003

  40. Li D, Mehta J (2005) Oxidized LDL, a critical factor in atherogenesis. Cardiovasc Res 68:353–354. https://doi.org/10.1016/j.cardiores.2005.09.009

    Article  CAS  PubMed  Google Scholar 

  41. Maiolino G, Rossitto G, Caielli P et al (2013) The Role of Oxidized Low-Density Lipoproteins in Atherosclerosis: The Myths and the Facts. Mediators Inflamm 2013:1–13. https://doi.org/10.1155/2013/714653

    Article  CAS  Google Scholar 

  42. Luo C, Wang F, Ren X et al (2017) Identification of a molecular signaling gene-gene regulatory network between GWAS susceptibility genes ADTRP and MIA3/TANGO1 for coronary artery disease. Biochim Biophys Acta Mol Basis Dis 1863:1640–1653. https://doi.org/10.1016/j.bbadis.2017.03.010

    Article  CAS  PubMed  Google Scholar 

  43. Contois JH, McConnell JP, Sethi AA et al (2009) Apolipoprotein B and cardiovascular disease risk: position statement from the AACC lipoproteins and vascular diseases division working group on best practices. Clin Chem 55:407–419. https://doi.org/10.1373/clinchem.2008.118356

    Article  CAS  PubMed  Google Scholar 

  44. Duval C, Chinetti G, Trottein F et al (2002) The role of PPARs in atherosclerosis. Trends Mol Med 8:422–430. https://doi.org/10.1016/S1471-4914(02)02385-7

    Article  CAS  PubMed  Google Scholar 

  45. Hsueh WA, Bruemmer D (2004) Peroxisome proliferator-activated receptor γ: implications for cardiovascular disease. Hypertension 43:297–305. https://doi.org/10.1161/01.HYP.0000113626.76571.5b

    Article  CAS  PubMed  Google Scholar 

  46. Luo C, Pook E, Wang F et al (2020) ADTRP regulates TFPI expression via transcription factor POU1F1 involved in coronary artery disease. Gene 753:144805. https://doi.org/10.1016/j.gene.2020.144805

    Article  CAS  PubMed  Google Scholar 

  47. Herman J-P, Jullien N, Guillen S et al (2012) Research resource: a genome-wide study identifies potential new target genes for POU1F1. Mol Endocrinol 26:1455–1463. https://doi.org/10.1210/me.2011-1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marinou K, Christodoulides C, Antoniades C, Koutsilieris M (2012) Wnt signaling in cardiovascular physiology. Trends Endocrinol Metab 23:628–636. https://doi.org/10.1016/j.tem.2012.06.001

    Article  CAS  PubMed  Google Scholar 

  49. Kockx M (2000) Apoptosis in atherosclerosis: beneficial or detrimental? Cardiovasc Res 45:736–746. https://doi.org/10.1016/S0008-6363(99)00235-7

    Article  CAS  PubMed  Google Scholar 

  50. Levitan I, Volkov S, Subbaiah PV (2010) Oxidized LDL: Diversity, Patterns of recognition, and pathophysiology. Antioxid Redox Signal 13:39–75. https://doi.org/10.1089/ars.2009.2733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim J, Kim J, Kim DW et al (2010) Wnt5a induces endothelial inflammation via β-catenin–independent signaling. J Immunol 185:1274–1282. https://doi.org/10.4049/jimmunol.1000181

    Article  CAS  PubMed  Google Scholar 

  52. Durak-Kozica M, Paszek E, Stępień EŁ (2019) Role of the Wnt signalling pathway in the development of endothelial disorders in response to hyperglycaemia. Expert Rev Mol Med 21:e7. https://doi.org/10.1017/erm.2019.8

    Article  CAS  PubMed  Google Scholar 

  53. Matthijs Blankesteijn W, Hermans KCM (2015) Wnt signaling in atherosclerosis. Eur J Pharmacol 763:122–130. https://doi.org/10.1016/j.ejphar.2015.05.023

    Article  CAS  PubMed  Google Scholar 

  54. Bot I, Shi G-P, Kovanen PT (2015) Mast cells as effectors in atherosclerosis. Arterioscler Thromb Vasc Biol 35:265–271. https://doi.org/10.1161/ATVBAHA.114.303570

    Article  CAS  PubMed  Google Scholar 

  55. Ellulu MS, Patimah I, Khaza’ai H et al (2017) Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci 4:851–863. https://doi.org/10.5114/aoms.2016.58928

    Article  CAS  Google Scholar 

  56. Rodríguez-Hernández H, Simental-Mendía LE, Rodríguez-Ramírez G, Reyes-Romero MA (2013) Obesity and Inflammation: epidemiology, risk factors, and markers of inflammation. Int J Endocrinol 2013:1–11. https://doi.org/10.1155/2013/678159

    Article  Google Scholar 

  57. Savage DB, Petersen KF, Shulman GI (2007) Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev 87:507–520. https://doi.org/10.1152/physrev.00024.2006

    Article  CAS  PubMed  Google Scholar 

  58. Blaschke F, Takata Y, Caglayan E et al (2006) Obesity, peroxisome proliferator-activated receptor, and atherosclerosis in type 2 diabetes. Arterioscler Thromb Vasc Biol 26:28–40. https://doi.org/10.1161/01.ATV.0000191663.12164.77

    Article  CAS  PubMed  Google Scholar 

  59. Larsen TM, Toubro S, Astrup A (2003) PPARgamma agonists in the treatment of type II diabetes: is increased fatness commensurate with long-term efficacy? Int J Obes 27:147–161. https://doi.org/10.1038/sj.ijo.802223

    Article  CAS  Google Scholar 

  60. Sharma AM, Staels B (2007) Peroxisome proliferator-activated receptor γ and adipose tissue—understanding obesity-related changes in regulation of lipid and glucose metabolism. J Clin Endocrinol Metab 92:386–395. https://doi.org/10.1210/jc.2006-1268

    Article  CAS  PubMed  Google Scholar 

  61. Wang Y-X (2010) PPARs: diverse regulators in energy metabolism and metabolic diseases. Cell Res 20:124–137. https://doi.org/10.1038/cr.2010.13

    Article  CAS  PubMed  Google Scholar 

  62. Yore MM, Syed I, Moraes-Vieira PM et al (2014) Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159:318–332. https://doi.org/10.1016/j.cell.2014.09.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Boden G (2008) Obesity and free fatty acids. Endocrinol Metab Clin North Am 37:635–646. https://doi.org/10.1016/j.ecl.2008.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Arner P, Rydén M (2015) Fatty acids, obesity and insulin resistance. Obes Facts 8:147–155. https://doi.org/10.1159/000381224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Delicia Shu Qin Ooi; Literature search and analysis: Zizheng Kee, Sze Min Ong; Writing—original draft preparation: Zizheng Kee, Sze Min Ong; Writing—review and editing: Chew-Kiat Heng, Delicia Shu Qin Ooi.

Corresponding author

Correspondence to Delicia Shu Qin Ooi.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest/Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kee, Z., Ong, S.M., Heng, CK. et al. Androgen-dependent tissue factor pathway inhibitor regulating protein: a review of its peripheral actions and association with cardiometabolic diseases. J Mol Med 100, 185–196 (2022). https://doi.org/10.1007/s00109-021-02160-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-021-02160-5

Keywords

Navigation