Skip to main content

Advertisement

Log in

Enhancers and MYC interplay in hematopoiesis

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Transcription requires the fine interplay between enhancers and transcription factors. Enhancers are able to activate transcription of genes involved in normal cell biology, whereas aberrant enhancer activity leads to oncogenesis. MYC is a well-established proto-oncogene involved in half of human cancers amplifying the output of its targets. The crosstalk between MYC and enhancers is known for many years since the discovery of IgH enhancer juxtaposition with MYC in high-grade lymphomas. Here, we focus mainly in the enhancers surrounding MYC in the 8q24 locus. That region comprises several enhancers that associate with other transcription factors, transmembrane receptors, and fusion genes composing complex regulatory networks aberrantly expressed in almost all types of hematological malignancies. Understanding the nature of these interactions in normal blood cells and in leukemias/lymphomas will expand MYC targeting options in the armamentarium against hematological cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Heinz S, Romanoski CE, Benner C, Allison KA, Kaikkonen MU, Orozco LD, Glass CK (2013) Effect of natural genetic variation on enhancer selection and function. Nature. 503:487–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang J, Li K, Cai W, Liu X, Zhang Y, Orkin SH, Xu J, Yuan GC (2018) Dissecting super-enhancer hierarchy based on chromatin interactions. Nat Commun 9:943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kim TK, Shiekhattar R (2015) Architectural and functional commonalities between enhancers and promoters. Cell 162:948–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Long HK, Prescott SL, Wysocka J (2016) Ever-changing landscapes: transcriptional enhancers in development and evolution. Cell. 167:1170–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fukaya T, Lim B, Levine M (2016) Enhancer control of transcriptional bursting. Cell. 166:358–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hanssen LLP, Kassouf MT, Oudelaar AM, Biggs D, Preece C, Downes DJ, Gosden M, Sharpe JA, Sloane-Stanley JA, Hughes JR, Davies B, Higgs DR (2017) Tissue-specific CTCF-cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo. Nat Cell Biol 19:952–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Furlong EEM, Levine M (2018) Developmental enhancers and chromosome topology. Science. 361:1341–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen H, Levo M, Barinov L, Fujioka M, Jaynes JB, Gregor T (2018) Dynamic interplay between enhancer-promoter topology and gene activity. Nat Genet 50:1296–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lim B, Heist T, Levine M, Fukaya T (2018) Visualization of transvection in living Drosophila embryos. Mol Cell 70:287–296.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fulco CP, Munschauer M, Anyoha R, Munson G, Grossman SR, Perez EM, Kane M, Cleary B, Lander ES, Engreitz JM (2016) Systematic mapping of functional enhancer-promoter connections with CRISPR interference. Science. 354:769–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mumbach MR, Satpathy AT, Boyle EA, Dai C, Gowen BG, Cho SW et al (2017) Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements. Nat Genet 49:1602–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cinghu S, Yang P, Kosak JP, Conway AE, Kumar D, Oldfield AJ, Adelman K, Jothi R (2017) Intragenic enhancers attenuate host gene expression. Mol Cell 68:104–117.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moorthy SD, Davidson S, Shchuka VM, Singh G, Malek-Gilani N, Langroudi L, Martchenko A, So V, Macpherson NN, Mitchell JA (2017) Enhancers and super-enhancers have an equivalent regulatory role in embryonic stem cells through regulation of single or multiple genes. Genome Res 27:246–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Osterwalder M, Barozzi I, Tissières V et al (2018) Enhancer redundancy provides phenotypic robustness in mammalian development. Nature. 2018(554):239–243

    Article  CAS  Google Scholar 

  15. Allahyar A, Vermeulen C, Bouwman BAM, Krijger PHL, Verstegen MJAM, Geeven G, van Kranenburg M, Pieterse M, Straver R, Haarhuis JHI, Jalink K, Teunissen H, Renkens IJ, Kloosterman WP, Rowland BD, de Wit E, de Ridder J, de Laat W (2018) Enhancer hubs and loop collisions identified from single-allele topologies. Nat Genet 50:1151–1160

    Article  CAS  PubMed  Google Scholar 

  16. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA, Hoke HA, Young RA (2013) Super-enhancers in the control of cell identity and disease. Cell. 155:934–947

    Article  CAS  PubMed  Google Scholar 

  17. Lovén J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, Bradner JE, Lee TI, Young RA (2013) Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell. 153:320–334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Cao F, Fang Y, Tan HK et al (2017) Super-enhancers and broad H3K4me3 domains form complex gene regulatory circuits involving chromatin interactions. Sci Rep 7:2186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA (2013) Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 153:307–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hnisz D, Schuijers J, Lin CY, Weintraub AS, Abraham BJ, Lee TI, Bradner JE, Young RA (2015) Convergence of developmental and oncogenic signaling pathways at transcriptional super-enhancers. Mol Cell 58:362–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J (2011) A unique chromatin signature uncovers early developmental enhancers in humans. Nature. 470:279–283

    Article  CAS  PubMed  Google Scholar 

  22. Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A 107:21931–21936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Henriques T, Scruggs BS, Inouye MO, Muse GW, Williams LH, Burkholder AB, Lavender CA, Fargo DC, Adelman K (2018) Widespread transcriptional pausing and elongation control at enhancers. Genes Dev 32:26–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sur I, Taipale J (2016) The role of enhancers in cancer. Nat Rev Cancer 16:483–493

    Article  CAS  PubMed  Google Scholar 

  25. Sun Y, Zhou B, Mao F et al (2018) HOXA9 reprograms the enhancer landscape to promote leukemogenesis. Cancer Cell 34:643–658.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Org T, Duan D, Ferrari R, Montel-Hagen A, van Handel B, Kerényi MA, Sasidharan R, Rubbi L, Fujiwara Y, Pellegrini M, Orkin SH, Kurdistani SK, Mikkola HK (2015) Scl binds to primed enhancers in mesoderm to regulate hematopoietic and cardiac fate divergence. EMBO J 34:759–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu J, Shao Z, Glass K, Bauer DE, Pinello L, Van Handel B, Hou S, Stamatoyannopoulos JA, Mikkola HK, Yuan GC, Orkin SH (2012) Combinatorial assembly of developmental stage-specific enhancers controls gene expression programs during human erythropoiesis. Dev Cell 23:796–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang J, Liu X, Li D, Shao Z, Cao H, Zhang Y, Trompouki E, Bowman TV, Zon LI, Yuan GC, Orkin SH, Xu J (2016) Dynamic control of enhancer repertoires drives lineage and stage-specific transcription during hematopoiesis. Dev Cell 36:9–23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Romano O, Peano C, Tagliazucchi GM et al (2016) Transcriptional, epigenetic and retroviral signatures identify regulatory regions involved in hematopoietic lineage commitment. Sci Rep 6:24724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, Zaretsky I, Jaitin DA, David E, Keren-Shaul H, Mildner A, Winter D, Jung S, Friedman N, Amit I (2014) Immunogenetics. Chromatin state dynamics during blood formation. Science 345:943–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Javierre BM, Burren OS, Wilder SP et al (2016) Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167:1369–1384.e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Luyten A, Zang C, Liu XS, Shivdasani RA (2014) Active enhancers are delineated de novo during hematopoiesis, with limited lineage fidelity among specified primary blood cells. Genes Dev 28:1827–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Katsumura KR, Ong IM, DeVilbiss AW, Sanalkumar R, Bresnick EH (2016) GATA factor-dependent positive-feedback circuit in acute myeloid leukemia cells. Cell Rep 16:2428–2441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yamazaki H, Suzuki M, Otsuki A, Shimizu R, Bresnick EH, Engel JD, Yamamoto M (2014) A remote GATA2 hematopoietic enhancer drives leukemogenesis in inv(3)(q21;q26) by activating EVI1 expression. Cancer Cell 25:415–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gröschel S, Sanders MA, Hoogenboezem R, de Wit E, Bouwman BAM, Erpelinck C, van der Velden V, Havermans M, Avellino R, van Lom K, Rombouts EJ, van Duin M, Döhner K, Beverloo HB, Bradner JE, Döhner H, Löwenberg B, Valk PJM, Bindels EMJ, de Laat W, Delwel R (2014) A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell. 157:369–381

    Article  PubMed  CAS  Google Scholar 

  36. Benetatos L, Vartholomatos G (2018) Enhancer DNA methylation in acute myeloid leukemia and myelodysplastic syndromes. Cell Mol Life Sci 75:1999–2009

    Article  CAS  PubMed  Google Scholar 

  37. Hnisz D, Weintraub AS, Day DS, Valton AL, Bak RO, Li CH, Goldmann J, Lajoie BR, Fan ZP, Sigova AA, Reddy J, Borges-Rivera D, Lee TI, Jaenisch R, Porteus MH, Dekker J, Young RA (2016) Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science. 351:1454–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bretones G, Delgado MD, León J (2015) Myc and cell cycle control. Biochim Biophys Acta 1849:506–516

    Article  CAS  PubMed  Google Scholar 

  39. Lin CY, Lovén J, Rahl PB, Paranal RM, Burge CB, Bradner JE, Lee TI, Young RA (2012) Transcriptional amplification in tumor cells with elevated c-Myc. Cell. 151:56–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nie Z, Hu G, Wei G, Cui K, Yamane A, Resch W, Wang R, Green DR, Tessarollo L, Casellas R, Zhao K, Levens D (2012) c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell. 151:68–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sabo A, Kress TR, Pelizzola M et al (2014) Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature. 511:488–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Walz S, Lorenzin F, Morton J et al (2014) Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature. 511:483–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV (2015) MYC, metabolism, and cancer. Cancer Discov 5(10):1024–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Benetatos L, Vartholomatos G, Hatzimichael E (2014) Polycomb group proteins and MYC: the cancer connection. Cell Mol Life Sci 71:257–269

    Article  CAS  PubMed  Google Scholar 

  45. Chen L, Alexe G, Dharia NV et al (2018) CRISPR-Cas9 screen reveals a MYCN-amplified neuroblastoma dependency on EZH2. J Clin Invest 128:446–462

    Article  PubMed  Google Scholar 

  46. Ortega M, Bhatnagar H, Lin AP, Wang L, Aster JC, Sill H, Aguiar RC. (2015) A microRNA-mediated regulatory loop modulates NOTCH and MYC oncogenic signals in B- and T-cell malignancies. Leukemia. 2015; 29(4):968–976

  47. Dang CV (2012) MYC on the path to cancer. Cell. 149:22–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li Y, Choi PS, Casey SC, Dill DL, Felsher DW (2014) MYC through miR-17-92 suppresses specific target genes to maintain survival, autonomous proliferation, and a neoplastic state. Cancer Cell 26:262–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Razavi P, Chang MT, Xu G et al (2018) The genomic landscape of endocrine-resistant advanced breast cancers. Cancer Cell 34:427–438.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schaub FX, Dhankani V, Berger AC, Trivedi M, Richardson AB, Shaw R, Zhao W, Zhang X, Ventura A, Liu Y, Ayer DE, Hurlin PJ, Cherniack AD, Eisenman RN, Bernard B, Grandori C, Cancer Genome Atlas Network (2018) Pan-cancer alterations of the MYC oncogene and its proximal network across the Cancer Genome Atlas. Cell Syst 6(3):282–300.e2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yoshida GJ (2018) Emerging roles of Myc in stem cell biology and novel tumor therapies. J Exp Clin Cancer Res 37:173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Tenen DG (2003) Disruption of differentiation in human cancer: AML shows the way. Nat Rev Cancer 3:89–101

    Article  CAS  PubMed  Google Scholar 

  53. Kim J, Woo AJ, Chu J, Snow JW, Fujiwara Y, Kim CG, Cantor AB, Orkin SH (2010) A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell. 143:313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Greaves M (2016) Leukaemia ‘firsts’ in cancer research and treatment. Nat Rev Cancer 16:163–172

    Article  PubMed  CAS  Google Scholar 

  55. Wolpaw AJ, Dang CV (2018) MYC-induced metabolic stress and tumorigenesis. Biochim Biophys Acta Rev Cancer 1870:43–50

    Article  CAS  PubMed  Google Scholar 

  56. Dejure FR, Eilers M (2017) MYC and tumor metabolism: chicken and egg. EMBO J 36:3409–3420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wilson A, Murphy MJ, Oskarsson T, Kaloulis K, Bettess MD, Oser GM, Pasche AC, Knabenhans C, Macdonald HR, Trumpp A (2004) c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 18:2747–2763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Matsushita H, Nakajima H, Nakamura Y, Tsukamoto H, Tanaka Y, Jin G, Yabe M, Asai S, Ono R, Nosaka T, Sugita K, Morimoto A, Hayashi Y, Hotta T, Ando K, Miyachi H (2008) C/EBPalpha and C/EBPvarepsilon induce the monocytic differentiation of myelomonocytic cells with the MLL-chimeric fusion gene. Oncogene. 27:6749–6760

    Article  CAS  PubMed  Google Scholar 

  59. Ohanian M, Rozovski U, Kanagal-Shamanna R et al (2018) MYC protein expression is an important prognostic factor in acute myeloid leukemia. Leuk Lymphoma 9:1–12

    Google Scholar 

  60. Weng S, Matsuura S, Mowery CT, Stoner SA, Lam K, Ran D, Davis AG, Lo MC, Zhang DE (2017) Restoration of MYC-repressed targets mediates the negative effects of GM-CSF on RUNX1-ETO leukemogenicity. Leukemia. 31:159–169

    Article  CAS  PubMed  Google Scholar 

  61. Guo Y, Niu C, Breslin P, Tang M, Zhang S, Wei W, Kini AR, Paner GP, Alkan S, Morris SW, Diaz M, Stiff PJ, Zhang J (2009) c-Myc-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Blood. 114:2097–2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Whitfield JR, Beaulieu ME, Soucek L (2017) Strategies to inhibit Myc and their clinical applicability. Front Cell Dev Biol 5:10

    Article  PubMed  PubMed Central  Google Scholar 

  63. Cole MD (2014) MYC association with cancer risk and a new model of MYC-mediated repression. Cold Spring Harb Perspect Med 4:a014316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Kieffer-Kwon KR, Tang Z, Mathe E, Qian J, Sung MH, Li G, Resch W, Baek S, Pruett N, Grøntved L, Vian L, Nelson S, Zare H, Hakim O, Reyon D, Yamane A, Nakahashi H, Kovalchuk AL, Zou J, Joung JK, Sartorelli V, Wei CL, Ruan X, Hager GL, Ruan Y, Casellas R (2013) Interactome maps of mouse gene regulatory domains reveal basic principles of transcriptional regulation. Cell. 155:1507–1520

    Article  CAS  PubMed  Google Scholar 

  65. Göndör A, Ohlsson R. (2018) Enhancer functions in three dimensions: beyond the flat world perspective. F1000Res. pii: F1000 Faculty Rev-681

  66. Dixon JR, Xu J, Dileep V, Zhan Y, Song F, le VT, Yardımcı GG, Chakraborty A, Bann DV, Wang Y, Clark R, Zhang L, Yang H, Liu T, Iyyanki S, An L, Pool C, Sasaki T, Rivera-Mulia JC, Ozadam H, Lajoie BR, Kaul R, Buckley M, Lee K, Diegel M, Pezic D, Ernst C, Hadjur S, Odom DT, Stamatoyannopoulos JA, Broach JR, Hardison RC, Ay F, Noble WS, Dekker J, Gilbert DM, Yue F (2018) Integrative detection and analysis of structural variation in cancer genomes. Nat Genet 50:1388–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cho SW, Xu J, Sun R, Mumbach MR et al (2018) Promoter of lncRNA gene PVT1 is a tumor-suppressor DNA boundary element. Cell 173:1398–1412.e22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. McEwan MV, Eccles MR, Horsfield JA (2012) Cohesin is required for activation of MYC by estradiol. PLoS One 7:e49160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zeid R, Lawlor MA, Poon E, e al. (2018) Enhancer invasion shapes MYCN-dependent transcriptional amplification in neuroblastoma. Nat Genet 50:515–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mahe M, Dufour F, Neyret-Kahn H et al (2018) An FGFR3/MYC positive feedback loop provides new opportunities for targeted therapies in bladder cancers. EMBO Mol Med:10

  71. Poli V, Fagnocchi L, Fasciani A et al (2018) MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state. Nat Commun 9:1024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Pomerantz MM, Ahmadiyeh N, Jia L et al (2009) The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat Genet 2009(41):882–884

    Article  CAS  Google Scholar 

  73. Yan J, Enge M, Whitington T, Dave K, Liu J, Sur I, Schmierer B, Jolma A, Kivioja T, Taipale M, Taipale J (2013) Transcription factor binding in human cells occurs in dense clusters formed around cohesin anchor sites. Cell. 154:801–813

    Article  CAS  PubMed  Google Scholar 

  74. Cohen AJ, Saiakhova A, Corradin O et al (2017) Hotspots of aberrant enhancer activity punctuate the colorectal cancer epigenome. Nat Commun 8:14400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lancho O, Herranz D (2018) The MYC enhancer-ome: long-range transcriptional regulation of MYC in cancer. Trends Cancer 4:810–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bahr C, von Paleske L, Uslu VV, Remeseiro S, Takayama N, Ng SW, Murison A, Langenfeld K, Petretich M, Scognamiglio R, Zeisberger P, Benk AS, Amit I, Zandstra PW, Lupien M, Dick JE, Trumpp A, Spitz F (2018) A Myc enhancer cluster regulates normal and leukaemic haematopoietic stem cell hierarchies. Nature. 553:515–520

    Article  CAS  PubMed  Google Scholar 

  77. Goardon N, Marchi E, Atzberger A, Quek L, Schuh A, Soneji S, Woll P, Mead A, Alford KA, Rout R, Chaudhury S, Gilkes A, Knapper S, Beldjord K, Begum S, Rose S, Geddes N, Griffiths M, Standen G, Sternberg A, Cavenagh J, Hunter H, Bowen D, Killick S, Robinson L, Price A, Macintyre E, Virgo P, Burnett A, Craddock C, Enver T, Jacobsen SE, Porcher C, Vyas P (2011) Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 19:138–152

    Article  CAS  PubMed  Google Scholar 

  78. Abelson S, Collord G, Ng SWK, Weissbrod O, Mendelson Cohen N, Niemeyer E, Barda N, Zuzarte PC, Heisler L, Sundaravadanam Y, Luben R, Hayat S, Wang TT, Zhao Z, Cirlan I, Pugh TJ, Soave D, Ng K, Latimer C, Hardy C, Raine K, Jones D, Hoult D, Britten A, McPherson J, Johansson M, Mbabaali F, Eagles J, Miller JK, Pasternack D, Timms L, Krzyzanowski P, Awadalla P, Costa R, Segal E, Bratman SV, Beer P, Behjati S, Martincorena I, Wang JCY, Bowles KM, Quirós JR, Karakatsani A, la Vecchia C, Trichopoulou A, Salamanca-Fernández E, Huerta JM, Barricarte A, Travis RC, Tumino R, Masala G, Boeing H, Panico S, Kaaks R, Krämer A, Sieri S, Riboli E, Vineis P, Foll M, McKay J, Polidoro S, Sala N, Khaw KT, Vermeulen R, Campbell PJ, Papaemmanuil E, Minden MD, Tanay A, Balicer RD, Wareham NJ, Gerstung M, Dick JE, Brennan P, Vassiliou GS, Shlush LI (2018) Prediction of acute myeloid leukaemia risk in healthy individuals. Nature. 559:400–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fiancette R, Rouaud P, Vincent-Fabert C, Laffleur B, Magnone V, Cogné M, Denizot Y (2011) A p53 defect sensitizes various stages of B cell development to lymphomagenesis in mice carrying an IgH 3′ regulatory region-driven c-myc transgene. J Immunol 187:5772–5782

    Article  CAS  PubMed  Google Scholar 

  80. Ryan RJ, Drier Y, Whitton H et al (2015) Detection of enhancer-associated rearrangements reveals mechanisms of oncogene dysregulation in B-cell lymphoma. Cancer Discov 5:1058–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhou H, Schmidt SC, Jiang S, Willox B, Bernhardt K, Liang J, Johannsen EC, Kharchenko P, Gewurz BE, Kieff E, Zhao B (2015) Epstein-Barr virus oncoprotein super-enhancers control B cell growth. Cell Host Microbe 17:205–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Herranz D, Ambesi-Impiombato A, Palomero T, Schnell SA, Belver L, Wendorff AA, Xu L, Castillo-Martin M, Llobet-Navás D, Cordon-Cardo C, Clappier E, Soulier J, Ferrando AA (2014) A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nat Med 20:1130–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wood CD, Veenstra H, Khasnis S, Gunnell A, Webb HM, Shannon-Lowe C, Andrews S, Osborne CS, West MJ (2016) MYC activation and BCL2L11 silencing by a tumour virus through the large-scale reconfiguration of enhancer-promoter hubs. Elife:5

  84. Crowther-Swanepoel D, Broderick P, Di Bernardo MC et al (2010) Common variants at 2q37.3, 8q24.21, 15q21.3 and 16q24.1 influence chronic lymphocytic leukemia risk. Nat Genet 42:132–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ryan RJH, Petrovic J, Rausch DM et al (2017) A B cell regulome links Notch to downstream oncogenic pathways in small B cell lymphomas. Cell Rep 21:784–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fabbri G, Holmes AB, Viganotti M, Scuoppo C, Belver L, Herranz D, Yan XJ, Kieso Y, Rossi D, Gaidano G, Chiorazzi N, Ferrando AA, Dalla-Favera R (2017) Common nonmutational NOTCH1 activation in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 114:E2911–E2919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sanchez-Martin M, Ferrando A (2017) The NOTCH1-MYC highway toward T-cell acute lymphoblastic leukemia. Blood. 129:1124–1133

    Article  CAS  PubMed  Google Scholar 

  88. Palomero T, Lim WK, Odom DT, Sulis ML, Real PJ, Margolin A, Barnes KC, O’Neil J, Neuberg D, Weng AP, Aster JC, Sigaux F, Soulier J, Look AT, Young RA, Califano A, Ferrando AA (2006) NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci U S A 103:18261–18266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Belver L, Yang AY, Albero R et al (2019) GATA3-controlled nucleosome eviction drives MYC enhancer activity in T-cell development and leukemia. Cancer Discov 9:1774–1791

    Article  PubMed  PubMed Central  Google Scholar 

  90. Yashiro-Ohtani Y, Wang H, Zang C et al (2014) Long-range enhancer activity determines Myc sensitivity to Notch inhibitors in T cell leukemia. Proc Natl Acad Sci U S A 111:E4946–E4953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Knoechel B, Roderick JE, Williamson KE, Zhu J, Lohr JG, Cotton MJ, Gillespie SM, Fernandez D, Ku M, Wang H, Piccioni F, Silver SJ, Jain M, Pearson D, Kluk MJ, Ott CJ, Shultz LD, Brehm MA, Greiner DL, Gutierrez A, Stegmaier K, Kung AL, Root DE, Bradner JE, Aster JC, Kelliher MA, Bernstein BE (2014) An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat Genet 46:364–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Choi SH, Severson E, Pear WS, Liu XS, Aster JC, Blacklow SC (2017) The common oncogenomic program of NOTCH1 and NOTCH3 signaling in T-cell acute lymphoblastic leukemia. PLoS One 12:e0185762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Vanden Bempt M, Demeyer S, Broux M et al (2018) Cooperative enhancer activation by TLX1 and STAT5 drives development of NUP214-ABL1/TLX1-positive T cell acute lymphoblastic leukemia. Cancer Cell 34:271–285.e7

    Article  CAS  Google Scholar 

  94. Gekas C, D’Altri T, Aligué R, González J, Espinosa L, Bigas A (2016) β-Catenin is required for T-cell leukemia initiation and MYC transcription downstream of Notch1. Leukemia. 30:2002–2010

    Article  CAS  PubMed  Google Scholar 

  95. Kamikubo Y (2018) Genetic compensation of RUNX family transcription factors in leukemia. Cancer Sci 109:2358–2363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Choi A, Illendula A, Pulikkan JA, Roderick JE, Tesell J, Yu J, Hermance N, Zhu LJ, Castilla LH, Bushweller JH, Kelliher MA (2017) RUNX1 is required for oncogenic Myb and Myc enhancer activity in T-cell acute lymphoblastic leukemia. Blood. 130:1722–1733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shi J, Whyte WA, Zepeda-Mendoza CJ, Milazzo JP, Shen C, Roe JS, Minder JL, Mercan F, Wang E, Eckersley-Maslin MA, Campbell AE, Kawaoka S, Shareef S, Zhu Z, Kendall J, Muhar M, Haslinger C, Yu M, Roeder RG, Wigler MH, Blobel GA, Zuber J, Spector DL, Young RA, Vakoc CR (2013) Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation. Genes Dev 27:2648–2662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chan HL, Beckedorff F, Zhang Y, Garcia-Huidobro J et al (2018) Polycomb complexes associate with enhancers and promote oncogenic transcriptional programs in cancer through multiple mechanisms. Nat Commun 9:3377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Pulikkan JA, Hegde M, Ahmad HM et al (2018) CBFβ-SMMHC inhibition triggers apoptosis by disrupting MYC chromatin dynamics in acute myeloid leukemia. Cell 174:172–186.e21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Knoechel B, Bhatt A, Pan L et al (2015) Complete hematologic response of early T-cell progenitor acute lymphoblastic leukemia to the γ-secretase inhibitor BMS-906024: genetic and epigenetic findings in an outlier case. Cold Spring Harb Mol Case Stud 1:a000539

    Article  PubMed  PubMed Central  Google Scholar 

  101. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, Kastritis E, Gilpatrick T, Paranal RM, Qi J, Chesi M, Schinzel AC, McKeown M, Heffernan TP, Vakoc CR, Bergsagel PL, Ghobrial IM, Richardson PG, Young RA, Hahn WC, Anderson KC, Kung AL, Bradner JE, Mitsiades CS (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 146:904–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Donato E, Croci O, Sabò A, Muller H, Morelli MJ, Pelizzola M, Campaner S (2017) Compensatory RNA polymerase 2 loading determines the efficacy and transcriptional selectivity of JQ1 in Myc-driven tumors. Leukemia. 31:479–490

    Article  CAS  PubMed  Google Scholar 

  103. Di Micco R, Fontanals-Cirera B, Low V et al (2014) Control of embryonic stem cell identity by BRD4-dependent transcriptional elongation of super-enhancer-associated pluripotency genes. Cell Rep 9:234–247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Cheong JK, Zhang F, Chua PJ, Bay BH, Thorburn A, Virshup DM (2015) Casein kinase 1α-dependent feedback loop controls autophagy in RAS-driven cancers. J Clin Invest 125:1401–1418

    Article  PubMed  PubMed Central  Google Scholar 

  105. Minzel W, Venkatachalam A, Fink A et al (2018) Small molecules co-targeting CKIα and the transcriptional kinases CDK7/9 control AML in preclinical models. Cell 175:171–185.e25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rathert P, Roth M, Neumann T, Muerdter F, Roe JS, Muhar M, Deswal S, Cerny-Reiterer S, Peter B, Jude J, Hoffmann T, Boryń ŁM, Axelsson E, Schweifer N, Tontsch-Grunt U, Dow LE, Gianni D, Pearson M, Valent P, Stark A, Kraut N, Vakoc CR, Zuber J (2015) Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature. 525:543–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, Chen X, Taipale J, Hughes TR, Weirauch MT (2018) The human transcription factors. Cell. 172:650–665

    Article  CAS  PubMed  Google Scholar 

  108. Mikhaylichenko O, Bondarenko V, Harnett D, Schor IE, Males M, Viales RR, Furlong EEM (2018) The degree of enhancer or promoter activity is reflected by the levels and directionality of eRNA transcription. Genes Dev 32:42–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dao LTM, Galindo-Albarrán AO, Castro-Mondragon JA, Andrieu-Soler C, Medina-Rivera A, Souaid C, Charbonnier G, Griffon A, Vanhille L, Stephen T, Alomairi J, Martin D, Torres M, Fernandez N, Soler E, van Helden J, Puthier D, Spicuglia S (2017) Genome-wide characterization of mammalian promoters with distal enhancer functions. Nat Genet 49:1073–1081

    Article  CAS  PubMed  Google Scholar 

  110. Gonda TJ, Ramsay RG (2015) Directly targeting transcriptional dysregulation in cancer. Nat Rev Cancer 15:686–694

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We apologize to all authors whose work has not been cited.

Authorship

L.B., A.B., and G.V. collected the data and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonidas Benetatos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benetatos, L., Benetatou, A. & Vartholomatos, G. Enhancers and MYC interplay in hematopoiesis. J Mol Med 98, 471–481 (2020). https://doi.org/10.1007/s00109-020-01891-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-020-01891-1

Keywords

Navigation