Skip to main content
Log in

A non-beta-lactam antibiotic inhibitor for enterohemorrhagic Escherichia coli O104:H4

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The overuse of antibiotics has caused an increased prevalence of drug-resistant bacteria. Bacterial resistance in E. coli is regulated via production of β-lactam-hydrolyzing β-lactamases enzymes. Escherichia coli O104: H4 is a multi-drug resistant strain known to resist β-lactam as well as several other antibiotics. Here, we report a molecular dynamic simulation–combined docking approach to identify, screen, and verify active pharmacophores against enterohemorrhagic Escherichia coli (EHEC). Experimental studies revealed a boronic acid cyclic monomer (BACM), a non-β-lactam compound, to inhibit the growth of E. coli O104: H4. In vitro Kirby Bauer disk diffusion susceptibility testing coupled interaction analysis suggests BACM inhibits E. coli O104:H4 growth by not only inhibiting the β-lactamase pathway but also via direct inhibition of the penicillin-binding protein. These results suggest that BACM could be used as a lead compound to develop potent drugs targeting beta-lactam resistant Gram-negative bacterial strains.

Key messages

• An in silico approach was reported to identify pharmacophores against E. coli O104: H4.

• In vitro studies revealed a non-β-lactam compound to inhibit the growth of E. coli O104: H4.

• This non-β-lactam compound could be used as a lead compound for targeting beta-lactam strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sengupta S, Chattopadhyay MK, Grossart HP (2013) The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol 4

  2. Donowitz, G.R. and G.L. Mandell, Drug-therapy - beta-lactam antibiotics 1 New England J Med, 1988. 318(7): p. 419–426

  3. Stillerman, M. and S.H. Bernstein, Streptococcal pharyngitis therapy. Am J Dis Child, 1964. 107(1): p. 35-&

  4. Holten KB (2000) Appropriate prescribing of oral beta-lactam antibiotics. Am Fam Physician 62(3)

  5. Elander R (2003) Industrial production of β-lactam antibiotics. Appl Microbiol Biotechnol 61(5–6):385–392

    Article  CAS  PubMed  Google Scholar 

  6. Rohde, H., et al., Open-source genomic analysis of Shiga-toxin-producing E. coli O104:H4. N Engl J Med, 2011. 365(8): p. 718–724

  7. Grad, Y.H., et al., Genomic epidemiology of the Escherichia coli O104:H4 outbreaks in Europe, 2011 (vol 109, pg 3065, 2012). Proc Natl Acad Sci U S A, 2012. 109(14): p. 5547–5547

  8. Kong KF, Schneper L, Mathee K (2010) Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. Apmis 118(1):1–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lyu J, Wang S, Balius TE, Singh I, Levit A, Moroz YS, O’Meara MJ, Che T, Algaa E, Tolmachova K, Tolmachev AA, Shoichet BK, Roth BL, Irwin JJ (2019) Ultra-large library docking for discovering new chemotypes. Nature 566(7743):224–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bahar I, Chennubhotla C, Tobi D (2007) Intrinsic dynamics of enzymes in the unbound state and relation to allosteric regulation. Curr Opin Struct Biol 17(6):633–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mahasenan KV, Molina R, Bouley R, Batuecas MT, Fisher JF, Hermoso JA, Chang M, Mobashery S (2017) Conformational dynamics in penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus, allosteric communication network and enablement of catalysis. J Am Chem Soc 139(5):2102–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mangoni, M., D. Roccatano, and A. Di Nola, Docking of flexible ligands to flexible receptors in solution by molecular dynamics simulation. Proteins: Struct, Funct, and Bioinf, 1999. 35(2): p. 153–162

  13. Klebe G (2006) Virtual ligand screening: strategies, perspectives and limitations. Drug Discov Today 11(13):580–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Adcock SA, McCammon JA (2006) Molecular dynamics: survey of methods for simulating the activity of proteins. Chem Rev 106(5):1589–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Trott O, Olson AJ (2010) Software news and update AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bakan A, Nevins N, Lakdawala AS, Bahar I (2012) Druggability assessment of allosteric proteins by dynamics simulations in the presence of probe molecules. J Chem Theory Comput 8(7):2435–2447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sunseri J, Koes DR (2016) Pharmit: interactive exploration of chemical space. Nucleic Acids Res 44(W1):W442–W448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Koes DR, Camacho CJ (2012) ZINCPharmer: pharmacophore search of the ZINC database. Nucleic Acids Res 40(W1):W409–W414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ahmed SA, Awosika J, Baldwin C, Bishop-Lilly KA, Biswas B, Broomall S, Chain PSG, Chertkov O, Chokoshvili O, Coyne S, Davenport K, Detter JC, Dorman W, Erkkila TH, Folster JP, Frey KG, George M, Gleasner C, Henry M, Hill KK, Hubbard K, Insalaco J, Johnson S, Kitzmiller A, Krepps M, Lo CC, Luu T, McNew LA, Minogue T, Munk CA, Osborne B, Patel M, Reitenga KG, Rosenzweig CN, Shea A, Shen X, Strockbine N, Tarr C, Teshima H, van Gieson E, Verratti K, Wolcott M, Xie G, Sozhamannan S, Gibbons HS, Threat Characterization Consortium (2012) Genomic comparison of Escherichia coli O104:H4 isolates from 2009 and 2011 reveals plasmid, and prophage heterogeneity, including Shiga toxin encoding phage stx2. PLoS One 7(11):e48228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22(2):195–201

    Article  CAS  PubMed  Google Scholar 

  21. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stec B, Holtz KM, Wojciechowski CL, Kantrowitz ER (2005) Structure of the wild-type TEM-1 beta-lactamase at 1.55 A and the mutant enzyme Ser70Ala at 2.1 A suggest the mode of noncovalent catalysis for the mutant enzyme. Acta Crystallogr D Biol Crystallogr 61(Pt 8):1072–1079

    Article  CAS  PubMed  Google Scholar 

  23. Cahill ST, Cain R, Wang DY, Lohans CT, Wareham DW, Oswin HP, Mohammed J, Spencer J, Fishwick CWG, McDonough MA, Schofield CJ, Brem J (2017) Cyclic boronates inhibit all classes of beta-lactamases. Antimicrob Agents Chemother 61(4)

  24. Lee, W., McDonough M., Kotra L., Li Z.H., Silvaggi N.R., Takeda Y., Kelly J.A., Mobashery S., A 1.2-A snapshot of the final step of bacterial cell wall biosynthesis. Proc Natl Acad Sci U S A, 2001. 98(4): p. 1427–31

  25. Isgro, J.T., et al.,2012 Analysis. Specific heat, in NAMD tutorial. . p. 50–53

  26. Vanommeslaeghe, K., Hatcher E., Acharya C., Kundu S., Zhong S., Shim J., Darian E., Guvench O., Lopes P., Vorobyov I., Mackerell AD Jr, CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem, 2010. 31(4): p. 671–690

  27. Yu W, He X, Vanommeslaeghe K, MacKerell AD Jr (2012) Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. J Comput Chem 33(31):2451–2468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lipinski CA (2016) Rule of five in 2015 and beyond: target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv Drug Deliv Rev 101:34–41

    Article  CAS  PubMed  Google Scholar 

  29. Kahlmeter G, Brown DFJ, Goldstein FW, MacGowan AP, Mouton JW, Odenholt I, Rodloff A, Soussy CJ, Steinbakk M, Soriano F, Stetsiouk O (2006) European Committee on Antimicrobial Susceptibility Testing (EUCAST) technical notes on antimicrobial susceptibility testing. Clin Microbiol Infect 12(6):501–503

    Article  CAS  PubMed  Google Scholar 

  30. Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3(2):163–175

    Article  CAS  PubMed  Google Scholar 

  31. Comitani F, Gervasio FL (2018) Exploring cryptic pockets formation in targets of pharmaceutical interest with SWISH. J Chem Theory Comput 14(6):3321–3331

    Article  CAS  PubMed  Google Scholar 

  32. Galdadas I, Lovera S, Pérez-Hernández G, Barnes MD, Healy J, Afsharikho H, Woodford N, Bonomo RA, Gervasio FL, Haider S (2018) Defining the architecture of KPC-2 carbapenemase: identifying allosteric networks to fight antibiotics resistance. Sci Rep 8:12916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Minasov G, Wang X, Shoichet BK (2002) An ultrahigh resolution structure of TEM-1 beta-lactamase suggests a role for Glu166 as the general base in acylation. J Am Chem Soc 124(19):5333–5340

    Article  CAS  PubMed  Google Scholar 

  34. Rose AS, Bradley AR, Valasatava Y, Duarte JM, Prlić A, Rose PW (2018) NGL Viewer: web-based molecular graphics for large complexes. Bioinformatics 34:3755–3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fonze, E., et al., TEM1 beta-lactamase structure solved by molecular replacement and refined structure of the S235A mutant. Acta Crystallogr D Biol Crystallogr, 1995. 51(Pt 5): p. 682–94

  36. Strynadka NC et al (1996) Molecular docking programs successfully predict the binding of a beta-lactamase inhibitory protein to TEM-1 beta-lactamase. Nat Struct Biol 3(3):233–239

    Article  CAS  PubMed  Google Scholar 

  37. Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67(4):593–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Acosta-Gutierrez S et al (2018) Getting drugs into Gram-negative bacteria: rational rules for permeation through general porins. Acs Infect Dis 4(10):1487–1498

    Article  CAS  PubMed  Google Scholar 

  39. Bajaj, H., et al., Bacterial outer membrane porins as electrostatic nanosieves: exploring transport rules of small polar molecules. ACS Nano, 2017. 11(6): p. 5465–5473

  40. Bajaj H, Scorciapino MA, Moynié L, Page MGP, Naismith JH, Ceccarelli M, Winterhalter M (2016) Molecular basis of filtering carbapenems by porins from beta-lactam-resistant clinical strains of Escherichia coli. J Biol Chem 291(6):2837–2847

    Article  CAS  PubMed  Google Scholar 

  41. Richter MF, Drown BS, Riley AP, Garcia A, Shirai T, Svec RL, Hergenrother PJ (2017) Predictive compound accumulation rules yield a broad - spectrum antibiotic. Nature 545(7654):299–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weston GS, Blázquez J, Baquero F, Shoichet BK (1998) Structure-based enhancement of boronic acid-based inhibitors of AmpC beta-lactamase. J Med Chem 41(23):4577–4586

    Article  CAS  PubMed  Google Scholar 

  43. Song W, Bae IK, Lee YN, Lee CH, Lee SH, Jeong SH (2007) Detection of extended-spectrum beta-lactamases by using boronic acid as an AmpC beta-lactamase inhibitor in clinical isolates of Klebsiella spp. and Escherichia coli. J Clin Microbiol 45(4):1180–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rojas LJ, Taracila MA, Papp-Wallace KM, Bethel CR, Caselli E, Romagnoli C, Winkler ML, Spellberg B, Prati F, Bonomo RA (2016) Boronic acid transition state inhibitors active against KPC and other class A beta-lactamases: structure-activity relationships as a guide to inhibitor design. Antimicrob Agents Chemother 60(3):1751–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Markham A (2014) Tavaborole: first global approval. Drugs 74(13):1555–1558

    Article  CAS  PubMed  Google Scholar 

  46. Lomovskaya O, Sun D, Rubio-Aparicio D, Nelson K, Tsivkovski R, Griffith DC, Dudley MN (2017) Vaborbactam: spectrum of beta-lactamase inhibition and impact of resistance mechanisms on activity in Enterobacteriaceae. Antimicrob Agents Chemother 61(11)

  47. Taylor, N.P.2017 VenatoRx raises $42M to take drug for breaking bacterial resistance to approval. [cited 2018; Available from: https://www.fiercebiotech.com/biotech/venatorx-raises-42m-to-take-drug-for-breaking-bacterial-resistance-to-approval. Accessed 20 Apr 2019

Download references

Acknowledgments

Partial support from the Ray Nesbitt Chair endowment to AJ is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Wang conducted molecular dynamics simulations, experimental studies, and compiled the manuscript. Jayaraman and Menon helped conduct the experimental studies. Karthikeyan and Gejji helped set up the experiments and Fernando directed molecular dynamics simulation algorithm development and the overall study.

Corresponding author

Correspondence to Sandun Fernando.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3522 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Jayaraman, A., Menon, R. et al. A non-beta-lactam antibiotic inhibitor for enterohemorrhagic Escherichia coli O104:H4. J Mol Med 97, 1285–1297 (2019). https://doi.org/10.1007/s00109-019-01803-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-019-01803-y

Keywords

Navigation