Skip to main content
Log in

The HIF-1 antagonist acriflavine: visualization in retina and suppression of ocular neovascularization

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Acriflavine, a fluorescent drug previously used for bacterial and trypanosomal infections, reduces hypoxia-inducible factor-1 (HIF-1) and HIF-2 transcriptional activity. In mice with oxygen-induced ischemic retinopathy, intraocular or intraperitoneal injections of acriflavine caused dose-dependent suppression of retinal neovascularization (NV) and significantly reduced expression of HIF-1-responsive genes. Intraocular injection of 100 ng caused inner retina fluorescence within 1 h that was seen throughout the entire retina between 1 and 5 days, and at 7 days after injection, strongly suppressed choroidal NV at Bruch’s membrane rupture sites. After suprachoroidal injection of 300 ng in rats, there was retinal fluorescence in the quadrant of the injection at 1 h that spread throughout the entire retina and choroid by 1 day, was detectable for 5 days, and dramatically reduced choroidal NV 14 days after rupture of Bruch’s membrane. After topical administration of acriflavine in mice, fluorescence was seen in the retina and retinal pigmented epithelium within 5 min and was detectable for 6–12 h. Administration of 0.5% drops to the cornea twice a day significantly reduced choroidal NV in mice. Electroretinographic b-wave amplitudes were normal 7 days after intravitreous injection of 100 ng of acriflavine in mice, showed mild threshold reductions at highest stimulus intensities after injection of 250 ng, and more extensive changes after injection of 500 ng. These data provide additional evidence for an important role for HIF-1 in retinal and choroidal NV and suggest that acriflavine can target HIF-1 through a variety of modes of administration and has good potential to provide a novel therapy for retinal and choroidal vascular diseases.

Key message

  • Acriflavine, an inhibitor of HIF-1, suppresses retinal and choroidal neovascularization.

  • HIF-1 plays a critical role in ocular neovascularization.

  • Acriflavine’s fluorescence provides a mean to track its entry and exit from the retina.

  • Acriflavine has therapeutic potential for the treatment of ocular neovascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Klein R, Klein BE, Linton KL (1992) Prevalence of age-related maculopathy. The Beaver Dam Eye Study Ophthalmology 99:933–943

    CAS  PubMed  Google Scholar 

  2. Klein R, Klein B (1995) Vision disorders in diabetes. In: Group NDD (ed) Diabetes in America National Institutes of Health. Washington, D.C., pp. 293–330

    Google Scholar 

  3. Ozaki H, Yu A, Della N, Ozaki K, Luna JD, Yamada H, Hackett SF, Okamoto N, Zack DJ, Semenza GL et al (1999) Hypoxia inducible factor-1a is increased in ischemic retina: temporal and spatial correlation with VEGF expression. Invest Ophthalmol Vis Sci 40:182–189

    CAS  PubMed  Google Scholar 

  4. Kelly BD, Hackett SF, Hirota K, Oshima Y, Cai Z, Berg-Dixon S, Rowan A, Yan Z, Campochiaro PA, Semenza GL (2003) Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res 93:1074–1081

    Article  CAS  PubMed  Google Scholar 

  5. Vinores SA, Xiao WH, Aslam S, Shen J, Oshima Y, Nambu H, Liu H, Carmeliet P, Campochiaro PA (2006) Implication of the hypoxia response element of the VEGF promoter in mouse models of retinal and choroidal neovascularization, but not retinal vascular development. J Cell Physiol 206:749–758

    Article  CAS  PubMed  Google Scholar 

  6. Yoshida T, Zhang H, Iwase T, Shen J, Semenza G, Campochiaro PA (2010) Digoxin inhibits retinal ischemia-induced HIF-1alpha expression and ocular neovascularization. FASEB J 24:1759–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Iwase T, Fu J, Yoshida T, Muramatusu D, Miki A, Hashida N, Lu L, Oveson B, Lime e Silva R, Seidel C et al (2013) Sustained delivery of a HIF-1 antagonist for ocular neovascularization. J Control Release 172:625–633

    Article  CAS  PubMed  Google Scholar 

  8. Campochiaro PA (2015) Molecular pathogenesis of retinal and choroidal vascular diseases. Prog Retin Eye Res 49:67–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, Kim RY, Group MS (2006) Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 355:1419–1431

    Article  CAS  PubMed  Google Scholar 

  10. Heier JS, Brown DM, Chong V, Korobelnik JF, Kaiser PK, Nguyen QD, Kirchhof B, Ho A, Ogura Y, Yancopoulos GD et al (2012) Intravitreal Aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology 119:2537–2548

    Article  PubMed  Google Scholar 

  11. Nguyen QD, Tatlipinar S, Shah SM, Haller JA, Quinlan E, Sung J, Zimmer-Galler I, Do DV, Campochiaro PA (2006) Vascular endothelial growth factor is a critical stimulus for diabetic macular edema. Am J Ophthalmol 142:961–969

    Article  CAS  PubMed  Google Scholar 

  12. Nguyen QD, Brown DM, Marcus DM, Boyer DS, Patel S, Feiner L, Gibson A, Sy J, Rundle AC, Hopkins JJ et al (2012) Ranibizumab for diabetic macular edema. Results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology 119:789–801

    Article  PubMed  Google Scholar 

  13. Campochiaro PA, Hafiz G, Shah SM, Nguyen QD, Ying H, Do DV, Quinlan E, Zimmer-Galler I, Haller JA, Solomon S et al (2008) Ranibizumab for macular edema due to retinal vein occlusions; implication of VEGF as a critical stimulator. Molec Ther 16:791–799

    Article  CAS  Google Scholar 

  14. Campochiaro PA, Heier JS, Feiner L, Gray S, Saroj N, Rundle AC, Murahashi WY, Rubio RG, Group BS (2010) Ranibizumab for macular edema following branch retinal vein occlusion: 6-month primary endpoint results of a phase III study. Ophthalmology 117:1102–1112

    Article  PubMed  Google Scholar 

  15. Brown DM, Campochiaro PA, Singh RP, Gray S, Rundle AC, Li Z, Rubio RG, Murahashi WY, Group CS (2010) Efficacy and safety of ranibizumab in the treatment of macular edema secondary to central retinal vein occlusion:6-month results of the phase III CRUISE study. Ophthalmology 117:1124–1133

    Article  PubMed  Google Scholar 

  16. Ip MS, Domalpally A, Hopkins JJ, Wong P, Ehrlich JS (2012) Long-term effects of ranibizumab on diabetic retinopathy severity and progression. Arch Ophthalmol 130:1145–1152

    Article  CAS  PubMed  Google Scholar 

  17. Jo N, Mailhos C, Ju M, Cheung E, Bradley J, Nishijima K, Robinson GS, Adamis AP, Shima DT (2006) Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization. Am J Pathol 168:2036–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dong A, Seidel C, Snell D, Ekawardhani S, Ahlskog JK, Baumann M, Shen J, Iwase T, Tian J, Stevens R et al (2014) Antagonism of PDGF-BB suppresses subretinal neovascularization and enhances the effects of blocking VEGF-A. Angiogenesis 17:553–562

    CAS  PubMed  Google Scholar 

  19. Hackett SF, Ozaki H, Strauss RW, Wahlin K, Suri C, Maisonpierre P, Yancopoulos G, Campochiaro PA (2000) Angiopoietin 2 expression in the retina: upregulation during physiologic and pathologic neovascularization. J Cell Physiol 184:275–284

    Article  CAS  PubMed  Google Scholar 

  20. Hackett SF, Wiegand SJ, Yancopoulos G, Campochiaro P (2002) Angiopoietin-2 plays an important role in retinal angiogenesis. J Cell Physiol 192:182–187

    Article  CAS  PubMed  Google Scholar 

  21. Gale NW, Thurston G, Hackett SF, Renard R, Wang Q, McClain J, Martin C, Witte C, Witte M, Jackson D et al (2002) Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Devel Cell 3:411–423

    Article  CAS  Google Scholar 

  22. Oshima Y, Oshima S, Nambu H, Kachi S, Takahashi K, Umeda N, Shen J, Dong A, Apte RS, Duh E et al (2005) Different effects of angiopoietin 2 in different vascular beds in the eye; new vessels are most sensitive. FASEB J 19:963–965

    CAS  PubMed  Google Scholar 

  23. Lima e Silva R, Shen J, Hackett SF, Kachi S, Akiyama H, Kiuchi K, Yokoi K, Hatara C, McLauer T, Aslam S et al (2007) The SDF-1/CXCR4 ligand/receptor pair is an important contributor to several types of ocular neovascularization. FASEB J 21:3219–3230

    Article  CAS  PubMed  Google Scholar 

  24. Jaffe GJ, Eliott D, Well JA, Prenner JL, Papp A, Patel S (2016) A phase 1 sutdy of intravitreous E10030 in combination with ranibizumab in neovascular age-related macular degeneration. Ophthalmology 123:78–85

    Article  PubMed  Google Scholar 

  25. Campochiaro PA, Sophie R, Tolentino M, Miller DM, Browning D, Boyer DS, Heier JS, Gambino L, Withers B, Brigell M et al (2015) Treatment of diabetic macular edema with an inhibitor of vascular endothelial-protein tyrosine phosphatase that activates Tie2. Ophthalmology 122:545–554

    Article  PubMed  Google Scholar 

  26. Campochiaro PA, Khanani A, Singer M, Patel S, Boyer D, Dugel P, Kherani S, Withers B, Gambino L, Peters K et al (2016) Enhanced benefit in diabetic macular edema from AKB-9778 Tie2 activation combined with vascular endothelial growth factor suppression. Ophthalmology 123:1722–1730

    Article  PubMed  Google Scholar 

  27. Zhang H, Qian DZ, Tan YS, Lee K, Gao P, Ren YR, Rey S, Hammers H, Chang D, Pili R et al (2008) Digoxin and other cardiac glycosides inhibit HIF-1alpha sythesis and block tumor growth. Proc Natl Acad Sci U S A 105:19579–19586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee K, Qian DZ, Rey S, Wei H, Liu JO, Semenza GL (2009) Antracycline chemotherpy inhibits HIF-1 transcriptional activity and tumor induced mobilizatio of circulating angiogenic cells. Proc Natl Acad Sci U S A 106:2353–2358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee K, Zhang H, Qlan DZ, Rey S, Liu JO, Semenza GL (2009) Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization. Proc Natl Acad Sci U S A 106:17910–17915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shen J, Yang XR, Xiao WH, Hackett SF, Sato Y, Campochiaro PA (2006) Vasohibin is up-regulated by VEGF in the retina and suppresses VEGF receptor 2 and retinal neovascularization. FASEB J 20:723–725

    CAS  PubMed  Google Scholar 

  31. Tobe T, Ortega S, Luna JD, Ozaki H, Okamoto N, Derevjanik NL, Vinores SA, Basilico C, Campochiaro PA (1998) Targeted disruption of the FGF2 gene does not prevent choroidal neovascularization in a murine model. Am J Pathol 153:1641–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Levinson JW, Desostoa A, Liebes LF, McCormick JJ (1976) Fluorescent labeling of DNA in solution with covalently bound acriflavin. Biochim Biophys Acta 447:260–273

    Article  CAS  PubMed  Google Scholar 

  33. Levinson JW, Maher VM, JJ MC (1977) Purification of commercil acriflavine by sephadex LH-20 column chromatography. J Histochem Cytochem 25:1275–1277

    Article  CAS  PubMed  Google Scholar 

  34. Komeima K, Rogers BS, Lu L, Campochiaro PA (2006) Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proc Natl Acad Sci U S A 103:11300–11305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Smith LEH, Wesolowski E, McLellan A, Kostyk SK, D'Amato R, Sullivan R, D'Amore PA (1994) Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35:101–111

    CAS  PubMed  Google Scholar 

  36. Aiello LP, Pierce EA, Foley ED, Takagi H, Chen H, Riddle L, Ferrara N, King GL, Smith LEH (1995) Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci U S A 92:10457–10461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pierce EA, Avery RL, Foley ED, Aiello LP, Smith LEH (1995) Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci U S A 92:905–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kwak N, Okamoto N, Wood JM, Campochiaro PA (2000) VEGF is an important stimulator in a model of choroidal neovascularization. Invest Ophthalmol Vis Sci 41:3158–3164

    CAS  PubMed  Google Scholar 

  39. Saishin Y, Saishin Y, Takahashi K, Lima Silva R, Hylton D, Rudge JS, Wiegand SJ, Campochiaro PA (2003) VEGF-TRAPR1R2 suppresses choroidal neovascularization and VEGF-induced breakdown of the blood-retinal barrier. J Cell Physiol 195:241–248

    Article  CAS  PubMed  Google Scholar 

  40. Browning CH, Cohen JB, Gaunt R, Gulbransen R (1922) Relationships between antiseptic action and chemical constitution with special reference to compounds of the pyridine, quinoline, acridine, and phenazine series. Proc Royal Soc 93:329–366

    Article  CAS  Google Scholar 

  41. Assinder EW (1936) Acriflavine as a urinary antiseptic. Lancet 227

  42. Doukas J, Mahesh S, Umeda N, Kachi S, Akiyama H, Yokoi K, Cao J, Chen Z, Dellamary L, Tam B et al (2008) Topical administration of a multi-targeted kinase inhibitor suppresses choroidal neovasculaization and retinal edema. J Cell Physiol 216:29–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Patel SR, Lin AS, Edelhauser HF, Prausnitz MR (2011) Suprachoroidal drug delivery to the back of the eye using hollow needles. Pharm Res 28:166–176

    Article  CAS  PubMed  Google Scholar 

  44. Patel SR, Berezovsky DE, McCarey BE, Zarnitsyn V, Edelhauser HF, Prausnitz MR (2012) Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye. Invest Ophthalmol Vis Sci 53:4433–4441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miranda E, Nordgren IK, Male AL, Lawrence CE, Hoakwie F, Cuda F, Court W, Fox KR, Townsend PA, Packham GK et al (2013) A cyclic peptide inhibitor of HIF-1 heterodimerization that inhibits hypoxia signaling in cancer cells. J Am Chem Soc 135:10418–10425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Broekgaarden M, Weijer R, Krekorian M, van den IJssel B, Kos M, Alles LK, van Wijk AC, Hazai E, van Gulik TM, Heger M (2016) Inhibition of hypoxia-inducible factor 1 with acriflavine sensitizes hypoxic tumor cells to photodynamic therapy with zinc phthalocyanine-encapsulating cationic liposomes. Nano Res 9:1639–1662

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by EY012609 from the National Eye Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Campochiaro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Mingbing Zeng and Jikui Shen contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, M., Shen, J., Liu, Y. et al. The HIF-1 antagonist acriflavine: visualization in retina and suppression of ocular neovascularization. J Mol Med 95, 417–429 (2017). https://doi.org/10.1007/s00109-016-1498-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-016-1498-9

Keywords

Navigation