Skip to main content
Log in

NFAT5-mediated CACNA1C expression is critical for cardiac electrophysiological development and maturation

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

An Erratum to this article was published on 12 August 2016

Abstract

Entry of calcium into cardiomyocyte via L-type calcium channel (LTCC) is fundamental to cardiac contraction. CACNA1C, a type of LTCC and a hallmark of a matured ventricular myocyte, is developmentally regulated. Here, we identified 138 potential transcription factors by a comparative genomic study on 5-kb promoter regions of CACNA1C gene across eight vertebrate species, and showed that six factors were developmentally regulated with the expression of Cacna1c in mouse P19cl6 in vitro cardiomyocyte differentiation model. We further demonstrated that the nuclear factor of activated T cells 5 (Nfat5) bound to a consensus sequence TGGAAGCGTTC and activated the transcription of Cacna1c. The siRNA-mediated knockdown of Nfat5 suppressed the expression of Cacna1c and decreased L-type calcium current in mouse neonatal cardiomyocytes. Furthermore, morpholino-mediated knockdown of nfat5 in zebrafish prohibited the expression of cacna1c and resulted in a non-contractile ventricle, while over-expression of either cacna1c or nfat5 rescued this impaired phenotype. Thus, NFAT5-mediated expression of CACNA1C is evolutionarily conserved and critical for cardiac electrophysiological development and maturation of cardiomyocyte.

Key message

  • Nfat5 binds to a consensus sequence TGGAAGCGTTC in the promoter of Cacna1c.

  • Nfat5 activates the transcription of Cacna1c.

  • Nfat5 knockdown suppresses Cacna1c expression, decreases L-type calcium current, and results in non-beating ventricle.

  • NFAT5-mediated expression of CACNA1C is evolutionarily conserved.

  • NFAT5-mediated CACNA1C expression is critical for cardiac electrophysiological development and maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schroder F, Klein G, Fiedler B, Bastein M, Schnasse N, Hillmer A, Ames S, Gambaryan S, Drexler H, Walter U et al (2003) Single L-type Ca(2+) channel regulation by cGMP-dependent protein kinase type I in adult cardiomyocytes from PKG I transgenic mice. Cardiovasc Res 60:268–277

    Article  CAS  PubMed  Google Scholar 

  2. Cheng H, Lederer WJ (2008) Calcium sparks. Physiol Rev 88:1491–1545

    Article  CAS  PubMed  Google Scholar 

  3. Wei C, Wang X, Chen M, Ouyang K, Song LS, Cheng H (2009) Calcium flickers steer cell migration. Nature 457:901–905

    Article  CAS  PubMed  Google Scholar 

  4. Mitra R, Morad M (1986) Two types of calcium channels in guinea pig ventricular myocytes. Proc Natl Acad Sci U S A 83:5340–5344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marsh JD, Allen PD (1989) Developmental regulation of cardiac calcium channels and contractile sensitivity to [Ca]o. Am J Physiol 256:H179–H185

    CAS  Google Scholar 

  6. Tohse N, Masuda H, Sperelakis N (1992) Novel isoform of Ca2+ channel in rat fetal cardiomyocytes. J Physiol 451:295–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wetzel GT, Chen F, Klitzner TS (1993) Ca2+ channel kinetics in acutely isolated fetal, neonatal, and adult rabbit cardiac myocytes. Circ Res 72:1065–1074

    Article  CAS  PubMed  Google Scholar 

  8. Haase H, Pfitzmaier B, McEnery MW, Morano I (2000) Expression of Ca(2+) channel subunits during cardiac ontogeny in mice and rats: identification of fetal alpha(1C) and beta subunit isoforms. J Cell Biochem 76:695–703

    Article  CAS  PubMed  Google Scholar 

  9. Qu Y, Boutjdir M (2001) Gene expression of SERCA2a and L- and T-type Ca channels during human heart development. Pediatr Res 50:569–574

    Article  CAS  PubMed  Google Scholar 

  10. Cribbs LL, Martin BL, Schroder EA, Keller BB, Delisle BP, Satin J (2001) Identification of the t-type calcium channel (Ca(v)3.1d) in developing mouse heart. Circ Res 88:403–407

    Article  CAS  PubMed  Google Scholar 

  11. Satin J, Itzhaki I, Rapoport S, Schroder EA, Izu L, Arbel G, Beyar R, Balke CW, Schiller J, Gepstein L (2008) Calcium handling in human embryonic stem cell-derived cardiomyocytes. Stem Cells 26:1961–1972

    Article  CAS  PubMed  Google Scholar 

  12. BenMohamed F, Ferron L, Ruchon Y, Gouadon E, Renaud JF, Capuano V (2009) Regulation of T-type Cav3.1 channels expression by synthetic glucocorticoid dexamethasone in neonatal cardiac myocytes. Mol Cell Biochem 320:173–183

    Article  CAS  PubMed  Google Scholar 

  13. Acosta L, Haase H, Morano I, Moorman AF, Franco D (2004) Regional expression of L-type calcium channel subunits during cardiac development. Dev Dyn 230:131–136

    Article  CAS  Google Scholar 

  14. Escobar AL, Ribeiro-Costa R, Villalba-Galea C, Zoghbi ME, Perez CG, Mejia-Alvarez R (2004) Developmental changes of intracellular Ca2+ transients in beating rat hearts. Am J Physiol Heart Circ Physiol 286:H971–H978

    Article  CAS  PubMed  Google Scholar 

  15. Ebert AM, Hume GL, Warren KS, Cook NP, Burns CG, Mohideen MA, Siegal G, Yelon D, Fishman MC, Garrity DM (2005) Calcium extrusion is critical for cardiac morphogenesis and rhythm in embryonic zebrafish hearts. Proc Natl Acad Sci U S A 102:17705–17710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nguemo F, Sasse P, Fleischmann BK, Kamanyi A, Schunkert H, Hescheler J, Reppel M (2009) Modulation of L-type Ca(2+) channel current density and inactivation by beta-adrenergic stimulation during murine cardiac embryogenesis. Basic Res Cardiol 104:295–306

    Article  CAS  PubMed  Google Scholar 

  17. Niwa N, Yasui K, Opthof T, Takemura H, Shimizu A, Horiba M, Lee JK, Honjo H, Kamiya K, Kodama I (2004) Cav3.2 subunit underlies the functional T-type Ca2+ channel in murine hearts during the embryonic period. Am J Physiol Heart Circ Physiol 286:H2257–H2263

    Article  CAS  PubMed  Google Scholar 

  18. Mizuta E, Miake J, Yano S, Furuichi H, Manabe K, Sasaki N, Igawa O, Hoshikawa Y, Shigemasa C, Nanba E et al (2005) Subtype switching of T-type Ca 2+ channels from Cav3.2 to Cav3.1 during differentiation of embryonic stem cells to cardiac cell lineage. Circ J 69:1284–1289

    Article  CAS  PubMed  Google Scholar 

  19. Takemura H, Yasui K, Opthof T, Niwa N, Horiba M, Shimizu A, Lee JK, Honjo H, Kamiya K, Ueda Y et al (2005) Subtype switching of L-Type Ca 2+ channel from Cav1.3 to Cav1.2 in embryonic murine ventricle. Circ J 69:1405–1411

    Article  CAS  PubMed  Google Scholar 

  20. Xu M, Welling A, Paparisto S, Hofmann F, Klugbauer N (2003) Enhanced expression of L-type Cav1.3 calcium channels in murine embryonic hearts from Cav1.2-deficient mice. J Biol Chem 278:40837–40841

    Article  CAS  PubMed  Google Scholar 

  21. Seisenberger C, Specht V, Welling A, Platzer J, Pfeifer A, Kuhbandner S, Striessnig J, Klugbauer N, Feil R, Hofmann F (2000) Functional embryonic cardiomyocytes after disruption of the L-type alpha1C (Cav1.2) calcium channel gene in the mouse. J Biol Chem 275:39193–39199

    Article  CAS  PubMed  Google Scholar 

  22. Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, Napolitano C, Schwartz PJ, Joseph RM, Condouris K et al (2004) Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119:19–31

    Article  CAS  PubMed  Google Scholar 

  23. Yazawa M, Hsueh B, Jia X, Pasca AM, Bernstein JA, Hallmayer J, Dolmetsch RE (2011) Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 471:230–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Satin J, Schroder EA (2009) Autoregulation of cardiac l-type calcium channels. Trends Cardiovasc Med 19:268–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Syddall CM, Reynard LN, Young DA, Loughlin J (2013) The identification of trans-acting factors that regulate the expression of GDF5 via the osteoarthritis susceptibility SNP rs143383. PLoS Genet 9:e1003557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kellis M, Patterson N, Birren B, Berger B, Lander ES (2004) Methods in comparative genomics: genome correspondence, gene identification and regulatory motif discovery. J Comput Biol 11:319–355

    Article  CAS  PubMed  Google Scholar 

  27. McNeill B, Perez-Iratxeta C, Mazerolle C, Furimsky M, Mishina Y, Andrade-Navarro MA, Wallace VA (2012) Comparative genomics identification of a novel set of temporally regulated hedgehog target genes in the retina. Mol Cell Neurosci 49:333–340

    Article  CAS  PubMed  Google Scholar 

  28. Habara-Ohkubo A (1996) Differentiation of beating cardiac muscle cells from a derivative of P19 embryonal carcinoma cells. Cell Struct Funct 21:101–110

    Article  CAS  PubMed  Google Scholar 

  29. Yang F, Zhou L, Wang Q, You X, Li Y, Zhao Y, Han X, Chang Z, He X, Cheng C et al (2014) NEXN inhibits GATA4 and leads to atrial septal defects in mice and humans. Cardiovasc Res 103:228–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu C, Yan H, Sun J, Yang F, Song C, Jiang F, Li Y, Dong J, Zheng GY, Tian XL et al (2013) NEXN is a novel susceptibility gene for coronary artery disease in Han Chinese. PLoS One 8:e82135

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gabellini D, Green MR, Tupler R (2002) Inappropriate gene activation in FSHD: a repressor complex binds a chromosomal repeat deleted in dystrophic muscle. Cell 110:339–348

    Article  CAS  PubMed  Google Scholar 

  32. Alden KJ, Goldspink PH, Ruch SW, Buttrick PM, Garcia J (2002) Enhancement of L-type Ca(2+) current from neonatal mouse ventricular myocytes by constitutively active PKC-betaII. Am J Physiol Cell Physiol 282:C768–C774

    Article  CAS  PubMed  Google Scholar 

  33. Harrell MD, Harbi S, Hoffman JF, Zavadil J, Coetzee WA (2007) Large-scale analysis of ion channel gene expression in the mouse heart during perinatal development. Physiol Genomics 28:273–283

    Article  CAS  PubMed  Google Scholar 

  34. Huang W, Deng Y, Dong W, Yuan W, Wan Y, Mo X, Li Y, Wang Z, Wang Y, Ocorr K et al (2011) The effect of excess expression of GFP in a novel heart-specific green fluorescence zebrafish regulated by nppa enhancer at early embryonic development. Mol Biol Rep 38:793–799

    Article  CAS  PubMed  Google Scholar 

  35. Wetzel GT, Klitzner TS (1996) Developmental cardiac electrophysiology recent advances in cellular physiology. Cardiovasc Res 31(Spec No):E52–E60

    Article  PubMed  Google Scholar 

  36. Qu Y, Karnabi E, Ramadan O, Yue Y, Chahine M, Boutjdir M (2011) Perinatal and postnatal expression of Cav1.3 alpha1D Ca(2)(+) channel in the rat heart. Pediatr Res 69:479–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu L, Fan QI, El-Zaru MR, Vanderpool K, Hines RN, Marsh JD (2000) Regulation of DHP receptor expression by elements in the 5′-flanking sequence. Am J Physiol Heart Circ Physiol 278:H1153–H1162

    CAS  PubMed  Google Scholar 

  38. Ho PD, Fan JS, Hayes NL, Saada N, Palade PT, Glembotski CC, McDonough PM (2001) Ras reduces L-type calcium channel current in cardiac myocytes. Corrective effects of L-channels and SERCA2 on [Ca(2+)](i) regulation and cell morphology. Circ Res 88:63–69

    Article  CAS  PubMed  Google Scholar 

  39. Cohen-Barak O, Yi Z, Hagiwara N, Monzen K, Komuro I, Brilliant MH (2003) Sox6 regulation of cardiac myocyte development. Nucleic Acids Res 31:5941–5948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang Y, Morishima M, Zheng M, Uchino T, Mannen K, Takahashi A, Nakaya Y, Komuro I, Ono K (2007) Transcription factors Csx/Nkx2.5 and GATA4 distinctly regulate expression of Ca2+ channels in neonatal rat heart. J Mol Cell Cardiol 42:1045–1053

    Article  PubMed  Google Scholar 

  41. Avila G, Medina IM, Jimenez E, Elizondo G, Aguilar CI (2007) Transforming growth factor-beta1 decreases cardiac muscle L-type Ca2+ current and charge movement by acting on the Cav1.2 mRNA. Am J Physiol Heart Circ Physiol 292:H622–H631

    Article  CAS  PubMed  Google Scholar 

  42. Schroder E, Byse M, Satin J (2009) L-type calcium channel C terminus autoregulates transcription. Circ Res 104:1373–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Miyakawa H, Woo SK, Dahl SC, Handler JS, Kwon HM (1999) Tonicity-responsive enhancer binding protein, a rel-like protein that stimulates transcription in response to hypertonicity. Proc Natl Acad Sci U S A 96:2538–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Go WY, Liu X, Roti MA, Liu F, Ho SN (2004) NFAT5/TonEBP mutant mice define osmotic stress as a critical feature of the lymphoid microenvironment. Proc Natl Acad Sci U S A 101:10673–10678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lopez-Rodriguez C, Antos CL, Shelton JM, Richardson JA, Lin F, Novobrantseva TI, Bronson RT, Igarashi P, Rao A, Olson EN (2004) Loss of NFAT5 results in renal atrophy and lack of tonicity-responsive gene expression. Proc Natl Acad Sci U S A 101:2392–2397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mak MC, Lam KM, Chan PK, Lau YB, Tang WH, Yeung PK, Ko BC, Chung SM, Chung SK (2011) Embryonic lethality in mice lacking the nuclear factor of activated T cells 5 protein due to impaired cardiac development and function. PLoS One 6:e19186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ricardo Dolmetsch for kindly providing us CACNA1C cDNA. This study was supported by grants from the National Basic Research Program of the Chinese Ministry of Science and Technology (973 grant nos.: 2013CB530700 and 2007CB512103 to XLT and 2012CB945101 to BZ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huiqing Cao or Xiao-Li Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 433 kb)

ESM 2

(XLS 33 kb)

ESM 3

(XLS 1036 kb)

ESM 4

(MPG 7674 kb)

ESM 5

(MPG 5724 kb)

ESM 6

(MPG 6714 kb)

ESM 7

(MPG 7380 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Zheng, NZ., Yuan, Q. et al. NFAT5-mediated CACNA1C expression is critical for cardiac electrophysiological development and maturation. J Mol Med 94, 993–1002 (2016). https://doi.org/10.1007/s00109-016-1444-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-016-1444-x

Keywords

Navigation