Skip to main content

Advertisement

Log in

Meaningful prevention of breast cancer metastasis: candidate therapeutics, preclinical validation, and clinical trial concerns

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The development of drugs to treat breast and other cancers proceeds through phase I dose finding, phase II efficacy, and phase III comparative studies in the metastatic setting, only then asking if metastasis can be prevented in adjuvant trials. Compounds without overt cytotoxic activity, such as those developed to inhibit metastatic colonization, will likely fail to shrink established lesions in the metastatic setting and never be tested in a metastasis prevention scenario where they were preclinically validated. We and others have proposed phase II primary and secondary metastasis prevention studies to address this need. Herein, we have asked whether preclinical metastasis prevention data agrees with the positive adjuvant setting trials. The data are limited but complimentary. We also review fundamental pathways involved in metastasis, including Src, integrins, focal adhesion kinase (FAK), and fibrosis, for their clinical progress to date and potential for metastasis prevention. Issues of inadequate preclinical validation and clinical toxicity profiles are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tevaarwerk AJ, Gray RJ, Schneider BP, Smith ML, Wagner LI, Fetting JH, Davidson N, Goldstein LJ, Miller KD, Sparano JA (2013) Survival in patients with metastatic recurrent breast cancer after adjuvant chemotherapy: little evidence of improvement over the past 30 years. Cancer 119:1140–1148

    PubMed Central  PubMed  Google Scholar 

  2. Engel J, Eckel R, Kerr J, Schmidt M, Furstenberger G, Richter R, Sauer H, Senn HJ, Holzel D (2003) The process of metastasisation for breast cancer. Eur J Cancer 39:1794–1806

    CAS  PubMed  Google Scholar 

  3. Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10:9–22

    CAS  PubMed  Google Scholar 

  4. Guo WJ, Giancotti FG (2004) Integrin signalling during tumour progression. Nat Rev Mol Cell Biol 5:816–826

    CAS  PubMed  Google Scholar 

  5. de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6:24–37

    PubMed  Google Scholar 

  6. Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51

    CAS  PubMed  Google Scholar 

  7. Park BK, Zhang HL, Zeng QH, Dai JL, Keller ET, Giordano T, Gu KN, Shah V, Pei L, Zarbo RJ et al (2007) NF-kappa B in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF. Nat Med 13:62–69

    CAS  PubMed  Google Scholar 

  8. Ibrahim T, Flamini E, Mercatali L, Sacanna E, Serra P, Amadori D (2010) Pathogenesis of osteoblastic bone metastases from prostate cancer. Cancer 116:1406–1418

    CAS  PubMed  Google Scholar 

  9. Luzzi KJ, MacDonald IC, Schmidt EE, Kerkvliet N, Morris VL, Chambers AF, Groom AC (1998) Multistep nature of metastatic inefficiency—dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 153:865–873

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Naumov GN, MacDonald IC, Weinmeister PM, Kerkvliet N, Nadkarni KV, Wilson SM, Morris VL, Groom AC, Chambers AF (2002) Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res 62:2162–2168

    CAS  PubMed  Google Scholar 

  11. Uhr JW, Pantel K (2011) Controversies in clinical cancer dormancy. Proc Natl Acad Sci U S A 108:12396–400

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Giancotti FG (2013) Mechanisms governing metastatic dormancy and reactivation. Cell 155:750–764

    CAS  PubMed  Google Scholar 

  13. Wells A, Griffith L, Wells JZ, Taylor DP (2013) The dormancy dilemma: quiescence versus balanced proliferation. Cancer Res 73:3811–3816

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Hensel JA, Flaig TW, Theodorescu D (2013) Clinical opportunities and challenges in targeting tumour dormancy. Nature Rev Clin Oncol 10:41–51

    CAS  Google Scholar 

  15. Naumov GN, Townson JL, MacDonald IC, Wilson SM, Bramwell VHC, Groom AC, Chambers AF (2003) Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases. Breast Cancer Res Treat 82:199–206

    CAS  PubMed  Google Scholar 

  16. Francia G, Cruz-Munoz W, Man S, Xu P, Kerbel RS (2011) Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat Rev Cancer 11:135–141

    CAS  PubMed  Google Scholar 

  17. Welch DR, Neri A, Nicolson GL (1983) Comparison of spontaneous and experimental metastasis using rat 13762-mammary adenocarcinoma metastatic cell clones. Invasion Metastasis 3:65–80

    CAS  PubMed  Google Scholar 

  18. Khanna C, Hunter K (2005) Modeling metastasis in vivo. Carcinogenesis 26:513–23

    CAS  PubMed  Google Scholar 

  19. Abe O, Abe R, Enomoto K, Kikuchi K, Koyama H, Masuda H, Nomura Y, Sakai K, Sugimachi K, Tominaga T et al (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365:1687–1717

    Google Scholar 

  20. Dowsett M, Cuzick J, Ingle J, Coates A, Forbes J, Bliss J, Buyse M, Baum M, Buzdar A, Colleoni M et al (2010) Meta-analysis of breast cancer outcomes in adjuvant trials of aromatase inhibitors versus tamoxifen. J Clin Oncol 28:509–518

    CAS  PubMed  Google Scholar 

  21. Davies C, Pan H, Godwin J, Gray R, Arriagada R, Raina V, Abraham M, Medeiros Alencar VH, Badran A et al (2013) Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet 381:805–816

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Hattar R, Maller O, McDaniel S, Hansen KC, Hedman KJ, Lyons TR, Lucia S, Wilson RS, Jr. and Schedin P (2009) Tamoxifen induces pleiotrophic changes in mammary stroma resulting in extracellular matrix that suppresses transformed phenotypes. Breast Cancer Res 11. doi: 10.1186/bcr2220

  23. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, Gianni L, Baselga J, Bell R, Jackisch C et al (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353:1659–1672

    CAS  PubMed  Google Scholar 

  24. Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, Mackey J, Glaspy J, Chan A, Pawlicki M et al (2011) Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med 365:1273–1283

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE, Davidson NE, Tan-Chiu E, Martino S, Paik S, Kaufman PA et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353:1673–1684

    CAS  PubMed  Google Scholar 

  26. Piccart-Gebhart MJ, Holmes AP, Baselga J, De Azambuja E, Dueck AC, Viale G, Zujewski JA, Goldhirsch A, Santillana S, Pritchard KI et al (2014) First results from the phase III ALTTO trial (BIG 2-06; NCCTG [Alliance] N063D) comparing one year of anti-HER2 therapy with lapatinib alone (L), trastuzumab alone (T), their sequence (T→L), or their combination (T+L) in the adjuvant treatment of HER2-positive early breast cancer (EBC). American Society of Clinical Oncology Annual Meeting, Chicago

  27. Goss PE, Smith IE, O'Shaughnessy J, Ejlertsen B, Kaufmann M, Boyle F, Buzdar AU, Fumoleau P, Gradishar W, Martin M et al (2013) Adjuvant lapatinib for women with early-stage HER2-positive breast cancer: a randomised, controlled, phase 3 trial. Lancet Oncol 14:88–96

    CAS  PubMed  Google Scholar 

  28. Begley CG, Ellis LM (2012) Raise standards for preclinical cancer research. Nature 483:531–533

    CAS  PubMed  Google Scholar 

  29. Steeg PS (2012) Perspective: the right trials. Nature 485:S58–S59

    CAS  PubMed  Google Scholar 

  30. Hedley BD, Chambers AF (2009) Tumor dormancy and metastasis. In: Woude GFV, Klein G (eds) Advances in cancer research, vol 102., pp 67–101

    Google Scholar 

  31. Wang S-H, Lin S-Y (2013) Tumor dormancy: potential therapeutic target in tumor recurrence and metastasis prevention. Exp Hematol Oncol 2:29–29

    PubMed Central  PubMed  Google Scholar 

  32. Weber GF (2013) Why does cancer therapy lack effective anti-metastasis drugs? Cancer Lett 328:207–211

    CAS  PubMed  Google Scholar 

  33. Peereboom DM (2012) Clinical trial design in brain metastasis: approaches for a unique patient population. Curr Oncol Rep 14:91–96

    PubMed  Google Scholar 

  34. Newman LA (2009) Epidemiology of locally advanced breast cancer. Semin Radiat Oncol 19:195–203

    PubMed  Google Scholar 

  35. Willner J, Kiricuta IC, Kolbl O (1997) Locoregional recurrence of breast cancer following mastectomy: always a fatal event? results of univariate and multivariate analysis. Int J Radiat Oncol Biol Phys 37:853–863

    CAS  PubMed  Google Scholar 

  36. Kong X, Moran MS, Zhang N, Haffty B, Yang Q (2011) Meta-analysis confirms achieving pathological complete response after neoadjuvant chemotherapy predicts favourable prognosis for breast cancer patients. Eur J Cancer 47:2084–2090

    PubMed  Google Scholar 

  37. Prowell TM, Pazdur R (2012) Pathological complete response and accelerated drug approval in early breast cancer. N Engl J Med 366:2438–2441

    CAS  PubMed  Google Scholar 

  38. Swain SM, Baselga J, Miles D, Im YH, Quah C, Lee LF, Cortes J (2014) Incidence of central nervous system metastases in patients with HER2-positive metastatic breast cancer treated with pertuzumab, trastuzumab, and docetaxel: results from the randomized phase III study CLEOPATRA. Ann Oncol 25:1116–1121

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Palmieri D, Duchnowska R, Woditschka S, Hua E, Qian YZ, Biernat W, Sosinska-Mielcarek K, Gril B, Stark AM, Hewitt SM et al (2014) Profound prevention of experimental brain metastases of breast cancer by temozolomide in an MGMT-dependent manner. Clin Cancer Res 20:2727–2739

    CAS  PubMed  Google Scholar 

  40. Stopeck AT, Lipton A, Body J-J, Steger GG, Tonkin K, de Boer RH, Lichinitser M, Fujiwara Y, Yardley DA, Viniegra M et al (2010) Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol 28:5132–5139

    CAS  PubMed  Google Scholar 

  41. Kopetz S, Chang GJ, Overman MJ, Eng C, Sargent DJ, Larson DW, Grothey A, Vauthey JN, Nagorney DM, McWilliams RR (2009) Improved survival in metastatic colorectal cancer is associated with adoption of hepatic resection and improved chemotherapy. J Clin Oncol 27:3677–3683

    PubMed Central  PubMed  Google Scholar 

  42. Mitry E, Fields ALA, Bleiberg H, Labianca R, Portier G, Tu DS, Nitti D, Torri V, Elias D, O'Callaghan C et al (2008) Adjuvant chemotherapy after potentially curative resection of metastases from colorectal cancer: a pooled analysis of two randomized trials. J Clin Oncol 26:4906–4911

    CAS  PubMed  Google Scholar 

  43. Portier G, Elias D, Bouche O, Rougier P, Bosset JF, Saric J, Belghiti J, Piedbois P, Guimbaud R, Nordlinger B et al (2006) Multicenter randomized trial of adjuvant fluorouracil and folinic acid compared with surgery alone after resection of colorectal liver metastases: FFCD ACHBTH AURC 9002 trial. J Clin Oncol 24:4976–4982

    CAS  PubMed  Google Scholar 

  44. Nordlinger B, Sorbye H, Glimelius B, Poston GJ, Schlag PM, Rougier P, Bechstein WO, Primrose JN, Euan TW, Finch-Jones M et al (2008) Perioperative chemotherapy with FOLFOX4 and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC Intergroup trial 40983): a randomised controlled trial. Lancet 371:1007–1016

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Ychou M, Hohenberger W, Thezenas S, Navarro M, Maurel J, Bokemeyer C, Shacham-Shmueli E, Rivera F, Choi CKK, Santoro A (2009) A randomized phase III study comparing adjuvant 5-fluorouracil/folinic acid with FOLFIRI in patients following complete resection of liver metastases from colorectal cancer. Ann Oncol 20:1964–1970

    CAS  PubMed  Google Scholar 

  46. Elsberger B (2014) Translational evidence on the role of Src kinase and activated Src kinase in invasive breast cancer. Crit Rev Oncol Hematol 89:343–51

    PubMed  Google Scholar 

  47. Hanna SC, Krishnan B, Bailey ST, Moschos SJ, Kuan PF, Shimamura T, Osborne LD, Siegel MB, Duncan LM, O'Brien ET et al (2013) HIF1 alpha and HIF2 alpha independently activate SRC to promote melanoma metastases. J Clin Investig 123:2078–2093

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Galliher AJ, Schiemann WP (2007) Src phosphorylates Tyr(284) in TGF-beta type II receptor and regulates TGF-beta stimulation of p38 MAPK during breast cancer cell proliferation and invasion. Cancer Res 67:3752–3758

    CAS  PubMed  Google Scholar 

  49. Armaiz-Pena GN, Allen JK, Cruz A, Stone RL, Nick AM, Lin YG, Han LY, Mangala LS, Villares GJ, Vivas-Mejia P et al. (2013) Src activation by beta-adrenoreceptors is a key switch for tumour metastasis. Nature Comm 4. doi: 10.1038/ncomms2413

  50. Lombardo LJ, Lee FY, Chen P, Norris D, Barrish JC, Behnia K, Castaneda S, Cornelius LAM, Das J, Doweyko AM et al (2004) Discovery of N-(2-chloro-6-methylphenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-m ethylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem 47:6658–6661

    CAS  PubMed  Google Scholar 

  51. Kim H, Laing M, Muller W (2005) c-Src-null mice exhibit defects in normal mammary gland development and ER alpha signaling. Oncogene 24:5629–5636

    CAS  PubMed  Google Scholar 

  52. Herynk MH, Beyer AR, Cui Y, Weiss H, Anderson E, Green TP, Fuqua SAW (2006) Cooperative action of tamoxifen and c-Src inhibition in preventing the growth of estrogen receptor-positive human breast cancer cells. Mol Cancer Ther 5:3023–3031

    CAS  PubMed  Google Scholar 

  53. Hiscox S, Morgan L, Green TP, Barrow D, Gee J, Nicholson RI (2006) Elevated Src activity promotes cellular invasion and motility in tamoxifen resistant breast cancer cells. Breast Cancer Res Treat 97:263–274

    CAS  PubMed  Google Scholar 

  54. Hiscox S, Jordan NJ, Morgan L, Green TP, Nicholson RI (2007) Src kinase promotes adhesion-independent activation of FAK and enhances cellular migration in tamoxifen-resistant breast cancer cells. Clin Exp Metastasis 24:157–167

    CAS  PubMed  Google Scholar 

  55. Zhao Y, Planas-Silva MD (2009) Mislocalization of cell-cell adhesion complexes in tamoxifen-resistant breast cancer cells with elevated c-Src tyrosine kinase activity. Cancer Lett 275:204–212

    CAS  PubMed  Google Scholar 

  56. Finn RS, Dering J, Ginther C, Wilson CA, Glaspy P, Tchekmedyian N, Slamon DJ (2007) Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/“triple-negative” breast cancer cell lines growing in vitro. Breast Cancer Res Treat 105:319–326

    CAS  PubMed  Google Scholar 

  57. Huang F, Reeves K, Han X, Fairchild C, Platero S, Wong TW, Lee F, Shaw P, Clark E (2007) Identification of candidate molecular markers predicting sensitivity in solid tumors to dasatinib: rationale for patient selection. Cancer Res 67:2226–2238

    CAS  PubMed  Google Scholar 

  58. Tan M, Li P, Klos KS, Lu J, Lan KH, Nagata Y, Fang DX, Jing T, Yu DH (2005) ErbB2 promotes Src synthesis and stability: novel mechanisms of Src activation that confer breast cancer metastasis. Cancer Res 65:1858–1867

    CAS  PubMed  Google Scholar 

  59. Stover DR, Furet P, Lydon NB (1996) Modulation of the SH2 binding specificity and kinase activity of Src by tyrosine phosphorylation within its SH2 domain. J Biol Chem 271:12481–12487

    CAS  PubMed  Google Scholar 

  60. Ishizawar RC, Miyake T, Parsons SJ (2007) c-Src modulates ErbB2 and ErbB3 heterocomplex formation and function. Oncogene 26:3503–3510

    CAS  PubMed  Google Scholar 

  61. Wang SE, Xiang B, Zent R, Quaranta V, Pozzi A, Arteaga CL (2009) Transforming growth factor beta induces clustering of HER2 and integrins by activating Src-focal adhesion kinase and receptor association to the cytoskeleton. Cancer Res 69:475–482

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Haenssen KK, Caldwell SA, Shahriari KS, Jackson SR, Whelan KA, Klein-Szanto AJ, Reginato MJ (2010) ErbB2 requires integrin alpha 5 for anoikis resistance via Src regulation of receptor activity in human mammary epithelial cells. J Cell Sci 123:1373–1382

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Zhang SY, Huang WC, Zhang L, Zhang CY, Lowery FJ, Ding ZX, Guo H, Wang H, Huang SY, Sahin AA et al (2013) Src family kinases as novel therapeutic targets to treat breast cancer brain metastases. Cancer Res 73:5764–5774

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Anbalagan M, Moroz K, Ali A, Carrier L, Glodowski S and Rowan BG (2012) Subcellular Localization of Total and Activated Src Kinase in African American and Caucasian Breast Cancer. Plos One 7. doi: 10.1371/journal.pone.0033017

  65. Kanomata N, Kurebayashi J, Kozuka Y, Sonoo H, Moriya T (2011) Clinicopathological significance of Y416Src and Y527Src expression in breast cancer. J Clin Pathol 64:578–586

    PubMed  Google Scholar 

  66. Zhang LY, Teng Y, Zhang Y, Liu J, Xu L, Qu JL, Hou KZ, Yang XH, Liu YP, Qu XJ (2012) c-Src expression is predictive of poor prognosis in breast cancer patients with bone metastasis, but not in patients with visceral metastasis. Apmis 120:549–557

    PubMed  Google Scholar 

  67. Myoui A, Nishimura R, Williams PJ, Hiraga T, Tamura D, Michigami T, Mundy GR, Yoneda T (2003) C-Src tyrosine kinase activity is associated with tumor colonization in bone and lung in an animal model of human breast cancer metastasis. Cancer Res 63:5028–5033

    CAS  PubMed  Google Scholar 

  68. Ma JG, Huang H, Chen SM, Chen Y, Xin XL, Lin LP, Ding J, Liu H, Meng LH (2011) PH006, a novel and selective Src kinase inhibitor, suppresses human breast cancer growth and metastasis in vitro and in vivo. Breast Cancer Res Treat 130:85–96

    CAS  PubMed  Google Scholar 

  69. Rice L, Lepler S, Pampo C, Siemann DW (2012) Impact of the SRC inhibitor dasatinib on the metastatic phenotype of human prostate cancer cells. Clin Exp Metastasis 29:133–142

    CAS  PubMed  Google Scholar 

  70. Trevino JG, Summy JM, Lesslie DP, Parikh NU, Hong DS, Lee FY, Donato NJ, Abbruzzese JL, Baker CH, Gallick GE (2006) Inhibition of Src expression and activity inhibits tumor progression and metastasis of human pancreatic adenocarcinoma cells in an orthotopic nude mouse model. Am J Pathol 168:962–972

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Rucci N, Recchia I, Angelucci A, Alamanou M, Del Fattore A, Fortunati D, Susa M, Fabbro D, Bologna M, Teti A (2006) Inhibition of protein kinase c-Src reduces the incidence of breast cancer metastases and increases survival in mice: Implications for therapy. J Pharmacol Exp Ther 318:161–172

    CAS  PubMed  Google Scholar 

  72. Wang S, Yuan YH, Liao L, Kuang SQ, Tien JCY, O'Malley BW, Xu JM (2009) Disruption of the SRC-1 gene in mice suppresses breast cancer metastasis without affecting primary tumor formation. Proc Natl Acad Sci U S A 106:151–156

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Zhang XHF, Wang QQ, Gerald W, Hudis CA, Norton L, Smid M, Foekens JA, Massague J (2009) Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 16:67–78

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Kim WG, Guigon CJ, Fozzatti L, Park JW, Lu CX, Willingham MC, Cheng SY (2012) SKI-606, an Src inhibitor, reduces tumor growth, invasion, and distant metastasis in a mouse model of thyroid cancer. Clin Cancer Res 18:1281–1290

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Chan CM, Jing X, Pike LA, Zhou Q, Lim DJ, Sams SB, Lund GS, Sharma V, Haugen BR, Schweppe RE (2012) Targeted inhibition of Src kinase with dasatinib blocks thyroid cancer growth and metastasis. Clin Cancer Res 18:3580–3591

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Anbalagan M, Ali A, Jones RK, Marsden CG, Sheng M, Carrier L, Bu YH, Hangauer D, Rowan BG (2012) Peptidomimetic Src/pretubulin inhibitor KX-01 alone and in combination with paclitaxel suppresses growth, metastasis in human ER/PR/HER2-negative tumor xenografts. Mol Cancer Ther 11:1936–1947

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Criscuoli ML, Nguyen M, Eliceiri BP (2005) Tumor metastasis but not tumor growth is dependent on Src-mediated vascular permeability. Blood 105:1508–14

    CAS  PubMed  Google Scholar 

  78. Puls LN, Eadens M, Messersmith W (2011) Current status of Src inhibitors in solid tumor malignancies. Oncologist 16:566–578

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Brixey AG, Light RW (2010) Pleural effusions due to dasatinib. Curr Opinion in Pulm Med 16:351–356

    Google Scholar 

  80. Schwock J, Dhani N, Hedley DW (2010) Targeting focal adhesion kinase signaling in tumor growth and metastasis. Expert Opin Ther Targets 14:77–94

    CAS  PubMed  Google Scholar 

  81. Zhao J, Guan JL (2009) Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev 28:35–49

    PubMed  Google Scholar 

  82. Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, Schlaepfer DD (2000) FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol 2:249–256

    CAS  PubMed  Google Scholar 

  83. Sieg DJ, Ilic D, Jones KC, Damsky CH, Hunter T, Schlaepfer DD (1998) Pyk2 and Src-family protein-tyrosine kinases compensate for the loss of FAK in fibronectin-stimulated signaling events but Pyk2 does not fully function to enhance FAK(−) cell migration. Embo J 17:5933–5947

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Lipinski CA, Loftus JC (2010) Targeting Pyk2 for therapeutic intervention. Expert Opin Ther Targets 14:95–108

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Bagi CM, Roberts GW, Andresen CJ (2008) Dual focal adhesion kinase/Pyk2 inhibitor has positive effects on bone tumors—implications for bone metastases. Cancer 112:2313–2321

    CAS  PubMed  Google Scholar 

  86. Roberts WG, Ung E, Whalen P, Cooper B, Hulford C, Autry C, Richter D, Emerson E, Lin J, Kath J et al (2008) Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271. Cancer Res 68:1935–1944

    CAS  PubMed  Google Scholar 

  87. Bagi CM, Christensen J, Cohen DP, Roberts WG, Wilkie D, Swanson T, Tuthill T, Andresen CJ (2009) Sunitinib and PF-562,271 (FAK/Pyk2 inhibitor) effectively block growth and recovery of human hepatocellular carcinoma in a rat xenograft model. Cancer Biol Ther 8:856–865

    CAS  PubMed  Google Scholar 

  88. Tanjoni I, Walsh C, Uryu S, Tomar A, Nam JO, Mielgo A, Lim ST, Liang CX, Koenig M, Sun C et al (2010) PND-1186 FAK inhibitor selectively promotes tumor cell apoptosis in three-dimensional environments. Cancer Biol Ther 9:764–777

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Halder J, Lin YG, Merritt WM, Spannuth WA, Nick AM, Honda T, Kamat AA, Han LY, Kim TJ, Lu C et al (2007) Therapeutic efficacy of a novel focal adhesion kinase inhibitor TAE226 in ovarian carcinoma. Cancer Res 67:10976–10983

    CAS  PubMed  Google Scholar 

  90. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE (2004) Focal adhesion kinase gene silencing promotes anoikis and suppresses metastasis of human pancreatic adenocarcinoma cells. Surgery 135:555–562

    CAS  PubMed  Google Scholar 

  91. Kaneda T, Sonoda Y, Ando K, Suzuki T, Sasaki Y, Oshio T, Tago M, Kasahara T (2008) Mutation of Y925F in focal adhesion kinase (FAK) suppresses melanoma cell proliferation and metastasis. Cancer Lett 270:354–361

    CAS  PubMed  Google Scholar 

  92. Schwock J, Dhani N, Cao MPJ, Zheng JZ, Clarkson R, Radulovich N, Navab R, Horn LC, Hedley DW (2009) Targeting focal adhesion kinase with dominant-negative FRNK or Hsp90 inhibitor 17-DMAG suppresses tumor growth and metastasis of SiHa cervical xenografts. Cancer Res 69:4750–4759

    CAS  PubMed  Google Scholar 

  93. Stokes JB, Adair SJ, Slack-Davis JK, Walters DM, Tilghman RW, Hershey ED, Lowrey B, Thomas KS, Bouton AH, Hwang RF et al (2011) Inhibition of focal adhesion kinase by PF-562,271 inhibits the growth and metastasis of pancreatic cancer concomitant with altering the tumor microenvironment. Mol Cancer Ther 10:2135–2145

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Lee S, Qiao J, Paul P, O'Connor KL, Evers BM, Chung DH (2012) FAK is a critical regulator of neuroblastoma liver metastasis. Oncotarget 3:1576–1587

    PubMed Central  PubMed  Google Scholar 

  95. Megison ML, Stewart JE, Nabers HC, Gillory LA, Beierle EA (2013) FAK inhibition decreases cell invasion, migration and metastasis in MYCN amplified neuroblastoma. Clin Exp Metastasis 30:555–568

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Jean C, Chen XL, Nam J-O, Tancioni I, Uryu S, Lawson C, Ward KK, Walsh CT, Miller NLG, Ghassemian M et al (2014) Inhibition of endothelial FAK activity prevents tumor metastasis by enhancing barrier function. J Cell Biol 204:247–263

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Sun H, Pisle S, Gardner ER, Figg WD (2010) Bioluminescent imaging study FAK inhibitor, PF-562,271, preclinical study in PC3M-luc-C6 local implant and metastasis xenograft models. Cancer Biol Ther 10:38–43

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Luo M, Guan JL (2010) Focal adhesion kinase: a prominent determinant in breast cancer initiation, progression and metastasis. Cancer Lett 289:127–139

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Fang XQ, Liu XF, Yao L, Chen CQ, Gu ZD, Ni PH, Zheng XM, Fan QS (2014) Somatic mutational analysis of FAK in breast cancer: a novel gain-of-function mutation due to deletion of exon 33. Biochem Biophys Res Commun 443:363–369

    CAS  PubMed  Google Scholar 

  100. van Nimwegen MJ, Verkoeijen S, van Buren L, Burg D, de Water BV (2005) Requirement for focal adhesion kinase in the early phase of mammary adenocarcinoma lung metastasis formation. Cancer Res 65:4698–4706

    PubMed  Google Scholar 

  101. Mitra SK, Lim ST, Chi A, Schlaepfer DD (2006) Intrinsic focal adhesion kinase activity controls orthotopic breast carcinoma metastasis via the regulation of urokinase plasminogen activator expression in a syngeneic tumor model. Oncogene 25:4429–4440

    CAS  PubMed  Google Scholar 

  102. Provenzano PP, Inman DR, Eliceiri KW, Beggs HE, Keely PJ (2008) Mammary epithelial-specific disruption of focal adhesion kinase retards tumor formation and metastasis in a transgenic mouse model of human breast cancer. Am J Pathol 173:1551–1565

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Sanchez AM, Flamini MI, Baldacci C, Goglia L, Genazzani AR, Simoncini T (2010) Estrogen receptor-alpha promotes breast cancer cell motility and invasion via focal adhesion kinase and N-WASP. Mol Endocrinol 24:2114–2125

    CAS  PubMed  Google Scholar 

  104. Anaganti S, Fernandez-Cuesta L, Langerod A, Hainaut P, Olivier M (2011) p53-Dependent repression of focal adhesion kinase in response to estradiol in breast cancer cell-lines. Cancer Lett 300:215–224

    CAS  PubMed  Google Scholar 

  105. Hiscox S, Barnfather P, Hayes E, Bramble P, Christensen J, Nicholson RI, Barrett-Lee P (2011) Inhibition of focal adhesion kinase suppresses the adverse phenotype of endocrine-resistant breast cancer cells and improves endocrine response in endocrine-sensitive cells. Breast Cancer Res Treat 125:659–669

    CAS  PubMed  Google Scholar 

  106. Yang XWH, Flores LM, Li QL, Zhou PC, Xu FH, Krop IE, Hemler ME (2010) Disruption of laminin-integrin-CD151-focal adhesion kinase axis sensitizes breast cancer cells to ErbB2 antagonists. Cancer Res 70:2256–2263

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Lazaro G, Smith C, Goddard L, Jordan N, McClelland R, Barrett-Lee P, Nicholson RI, Hiscox S (2013) Targeting focal adhesion kinase in ER+/HER2+breast cancer improves trastuzumab response. Endocrine-Related Cancer 20:691–704

    CAS  PubMed  Google Scholar 

  108. Alexopoulou AN, Ho-Yen CM, Papalazarou V, Elia G, Jones JL and Hodivala-Dilke K (2014) Tumour-associated endothelial-FAK correlated with molecular sub-type and prognostic factors in invasive breast cancer. Bmc Cancer 14. doi: 10.1186/1471-2407-14-237

  109. Dunn KB, Heffler M, Golubovskaya VM (2010) Evolving therapies and FAK inhibitors for the treatment of cancer. Anti Cancer Agents Med Chem 10:722–734

    CAS  Google Scholar 

  110. Wynn TA, Ramalingam TR (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 18:1028–1040

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Orr FW, Adamson IYR, Young L (1986) Promotion of pulmonary metastasis in mice by bleomycin-induced endothelial injury. Cancer Res 46:891–897

    CAS  PubMed  Google Scholar 

  112. Osada S, Kanematsu M, Imai H, Goshima S, Sugiyama Y (2008) Hepatic fibrosis influences the growth of hepatocellular carcinoma. Hepato-Gastroenterology 55:184–187

    PubMed  Google Scholar 

  113. Orr FW, Adamson IYR, Young L (1986) Quantification of metastatic tumor-growth in bleomycin-injured lungs. Clin Exp Metastasis 4:105–116

    CAS  PubMed  Google Scholar 

  114. Yashiro M, Chung YS, Nishimura S, Inoue T, Sowa M (1996) Fibrosis in the peritoneum induced by scirrhous gastric cancer cells may act as ''soil'' for peritoneal dissemination. Cancer 77:1668–1675

    CAS  PubMed  Google Scholar 

  115. van Deventer HW, Palmieri DA, Wu QP, McCook EC, Serody JS (2013) Circulating fibrocytes prepare the lung for cancer metastasis by recruiting Ly-6C(+) monocytes Via CCL2. J Immunol 190:4861–4867

    PubMed Central  PubMed  Google Scholar 

  116. Cox TR, Bird D, Baker AM, Barker HE, Ho MWY, Lang G, Erler JT (2013) LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis. Cancer Res 73:1721–1732

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Gerber EE, Gallo EM, Fontana SC, Davis EC, Wigley FM, Huso DL, Dietz HC (2013) Integrin-modulating therapy prevents fibrosis and autoimmunity in mouse models of scleroderma. Nature 503:126−+

    PubMed Central  PubMed  Google Scholar 

  118. Hawinkels L, ten Dijke P (2011) Exploring anti-TGF-beta beta therapies in cancer and fibrosis. Growth Factors 29:140–152

    CAS  PubMed  Google Scholar 

  119. Margadant C, Sonnenberg A (2010) Integrin-TGF-beta crosstalk in fibrosis, cancer and wound healing. Embo Reports 11:97–105

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Rancoule C, Pradere JP, Gonzalez J, Klein J, Valet P, Bascands JL, Schanstra JP, Saulnier-Blache JS (2011) Lysophosphatidic acid-1-receptor targeting agents for fibrosis. Expert Opinion Investig Drugs 20:657–667

    CAS  Google Scholar 

  121. Kim KS, Sengupta S, Berk M, Kwak YG, Escobar PF, Belinson J, Mok SC, Xu Y (2006) Hypoxia enhances lysophosphatidic acid responsiveness in ovarian cancer cells and lysophosphatidic acid induces ovarian tumor metastasis in vivo. Cancer Res 66:7983–7990

    CAS  PubMed  Google Scholar 

  122. Liu SY, Umezu-Goto M, Murph M, Lu YL, Liu WB, Zhang F, Yu SX, Stephens LC, Cui XJ, Murrow G et al (2009) Expression of autotaxin and lysophosphatidic acid receptors increases mammary tumorigenesis, invasion, and metastases. Cancer Cell 15:539–550

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Boucharaba A, Serre CM, Gres S, Saulnier-Blache JS, Bordet JC, Guglielmi J, Clezardin P, Peyruchaud O (2004) Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J Clin Investig 114:1714–1725

    CAS  PubMed Central  PubMed  Google Scholar 

  124. David M, Wannecq E, Descotes F, Jansen S, Deux B, Ribeiro J, Serre CM, Gres S, Bendriss-Vermare N, Bollen M et al. (2010) Cancer cell expression of autotaxin controls bone metastasis formation in mouse through lysophosphatidic acid-dependent activation of osteoclasts. Plos One 5. doi: 10.1371/journal.pone.0009741

  125. Shida D, Kitayama J, Yamaguchi H, Okaji Y, Tsuno NH, Watanabe T, Takuwa Y, Nagawa H (2003) Lysophosphatidic acid (LPA) enhances the metastatic potential of human colon carcinoma DLD1 cells through LPA1. Cancer Res 63:1706–1711

    CAS  PubMed  Google Scholar 

  126. Su SC, Hu XX, Kenney PA, Merrill MM, Babaian KN, Zhang XY, Maity T, Yang SF, Lin X, Wood CG (2013) Autotaxin-lysophosphatidic acid signaling axis mediates tumorigenesis and development of acquired resistance to sunitinib in renal cell carcinoma. Clin Cancer Res 19:6461–6472

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Samadi N, Bekele RT, Goping IS, Schang LM and Brindley DN (2011) Lysophosphatidate induces chemo-resistance by releasing breast cancer cells from taxol-induced mitotic arrest. Plos One 6. doi: 10.1371/journal.pone.0020608

  128. Marshall JCA, Collins JW, Nakayama J, Horak CE, Liewehr DJ, Steinberg SM, Albaugh M, Vidal-Vanaclocha F, Palmieri D, Barbier M et al (2012) Effect of inhibition of the lysophosphatidic acid receptor 1 on metastasis and metastatic dormancy in breast cancer. J Natl Cancer Inst 104:1306–1319

    CAS  PubMed Central  PubMed  Google Scholar 

  129. King TE Jr, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK, Gorina E, Hopkins PM, Kardatzke D, Lancaster L et al (2014) A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 370:2083–2092

    CAS  PubMed  Google Scholar 

  130. Shimaoka M, Springer TA (2003) Therapeutic antagonists and conformational regulation of integrin function. Nat Rev Drug Discov 2:703–716

    CAS  PubMed  Google Scholar 

  131. Barczyk M, Carracedo S, Gullberg D (2010) Integrins. Cell Tissue Res 339:269–280

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Brakebusch C, Fassler R (2003) The integrin-actin connection, an eternal love affair. Embo J 22:2324–2333

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    CAS  PubMed  Google Scholar 

  134. Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10:21–33

    CAS  PubMed  Google Scholar 

  135. Shattil SJ, Kim C, Ginsberg MH (2010) The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 11:288–300

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Legate KR, Wickstrom SA, Fassler R (2009) Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev 23:397–418

    CAS  PubMed  Google Scholar 

  137. Schwartz MA, Ginsberg MH (2002) Networks and crosstalk: integrin signalling spreads. Nat Cell Biol 4:E65–E68

    CAS  PubMed  Google Scholar 

  138. Stupack DG (2005) Integrins as a distinct subtype of dependence receptors. Cell Death Differ 12:1021–1030

    CAS  PubMed  Google Scholar 

  139. Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell-adhesion—RGD and integrins. Science 238:491–497

    CAS  PubMed  Google Scholar 

  140. Pierschbacher MD, Ruoslahti E (1984) Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309:30–33

    CAS  PubMed  Google Scholar 

  141. Kapp TG, Rechenmacher F, Sobahi TR, Kessler H (2013) Integrin modulators: a patent review. Expert Opinion Ther Patents 23:1273–1295

    CAS  Google Scholar 

  142. Weis SM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17:1359–1370

    CAS  PubMed  Google Scholar 

  143. Humphries MJ, Olden K, Yamada KM (1986) A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma-cells. Science 233:467–470

    CAS  PubMed  Google Scholar 

  144. Curley GP, Blum H, Humphries MJ (1999) Integrin antagonists. Cell Mol Life Sci 56:427–441

    CAS  PubMed  Google Scholar 

  145. Dechantsreiter MA, Planker E, Matha B, Lohof E, Holzemann G, Jonczyk A, Goodman SL, Kessler H (1999) N-methylated cyclic RGD peptides as highly active and selective alpha(v)beta(3) integrin antagonists. J Med Chem 42:3033–3040

    CAS  PubMed  Google Scholar 

  146. Mas-Moruno C, Rechenmacher F, Kessler H (2010) Cilengitide: the first anti-angiogenic small molecule drug candidate. Design, synthesis and clinical evaluation. Anti Cancer Agents Med Chem 10:753–768

    CAS  Google Scholar 

  147. Roger Stupp MEH, Gorlia T, Erridge S, Grujicic D, Steinbach JP, Wick W, Tarnawski R, Nam D-H, Weyerbrock A, Hau P et al (2014) A neurocentric perspective on glioma invasion. Nat Rev Neurosci 15:455–65

    Google Scholar 

  148. Gasparini G, Brooks PC, Biganzoli E, Vermeulen PB, Bonoldi E, Dirix LY, Ranieri G, Miceli R, Cheresh DA (1998) Vascular integrin alpha(v)beta(3): a new prognostic indicator in breast cancer. Clin Cancer Res 4:2625–2634

    CAS  PubMed  Google Scholar 

  149. McNeel DG, Eickhoff J, Lee FT, King DM, Alberti D, Thomas JP, Friedl A, Kolesar J, Marnocha R, Volkman J et al (2005) Phase I trial of a monoclonal antibody specific for alpha(v)beta(3) integrin (MEDI-522) in patients with advanced malignancies, including an assessment of effect on tumor perfusion. Clin Cancer Res 11:7851–7860

    CAS  PubMed  Google Scholar 

  150. Lautenschlaeger T, Perry J, Peereboom D, Li B, Ibrahim A, Huebner A, Meng W, White J and Chakravarti A (2013) In vitro study of combined cilengitide and radiation treatment in breast cancer cell lines. Radiat Oncol 8. doi: 10.1186/1748-717x-8-246

  151. Burke PA, DeNardo SJ, Miers LA, Lamborn KR, Matzku S, DeNardo GL (2002) Cilengitide targeting of alpha(v)beta(3) integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Res 62:4263–4272

    CAS  PubMed  Google Scholar 

  152. Bauerle T, Komljenovic D, Merz M, Berger MR, Goodman SL, Semmler W (2011) Cilengitide inhibits progression of experimental breast cancer bone metastases as imaged noninvasively using VCT, MRI and DCE-MRI in a longitudinal in vivo study. Int J Cancer 128:2453–2462

    PubMed  Google Scholar 

  153. Harms JF, Welch DR, Samant RS, Shevde LA, Miele ME, Babu GR, Goldberg SF, Gilman VR, Sosnowski DM, Campo DA et al (2004) A small molecule antagonist of the alpha(v)beta(3) integrin suppresses MDA-MB-435 skeletal metastasis. Clin Exp Metastasis 21:119–128

    CAS  PubMed  Google Scholar 

  154. Esposito M, Kang Y (2014) Targeting tumor-stromal interactions in bone metastasis. Pharmacol Ther 141:222–233

    CAS  PubMed  Google Scholar 

  155. Eccles SA, Aboagye EO, Ali S, Anderson AS, Armes J, Berditchevski F, Blaydes JP, Brennan K, Brown NJ, Bryant HE et al. (2013) Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer. Breast Cancer Res 15. doi: 10.1186/bcr3493

  156. Bidard F-C, Pierga J-Y, Soria J-C, Thiery JP (2013) OPINION translating metastasis-related biomarkers to the clinic-progress and pitfalls. Nat Rev Clin Oncol 10:169–179

    CAS  PubMed  Google Scholar 

  157. Aguirre-Ghiso JA, Bragado P, Sosa MS (2013) Targeting dormant cancer. Nat Med 19:276–277

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Bandyopadhyay A, Wang L, Agyin J, Tang Y, Lin S, Yeh IT, De K and Sun L-Z (2010) Doxorubicin in combination with a small TGF beta Inhibitor: a potential novel therapy for metastatic breast cancer in mouse models. Plos One 5. doi: 10.1371/journal.pone.0010365

  159. Bader FG, Lordick F, Fink U, Becker K, Hoefler H, Busch R, Siewert JR, Ott K (2008) Paclitaxel in the neoadjuvant treatment for adeno carcinoma of the distal esophagus (AEG I). A comparison of two phase II trials with long-term follow-up. Onkologie 31:366–372

    CAS  PubMed  Google Scholar 

  160. Martin M, Pienkowski T, Mackey J, Pawlicki M, Guastalla JP, Weaver C, Tomiak E, Al-Tweigeri T, Chap L, Juhos E et al (2005) Adjuvant docetaxel for node-positive breast cancer. N Engl J Med 352:2302–2313

    CAS  PubMed  Google Scholar 

  161. Jiang H, Tao W, Zhang M, Pan S, Kanwar JR, Sun X (2010) Low-dose metronomic paclitaxel chemotherapy suppresses breast tumors and metastases in mice. Cancer Investig 28:74–84

    CAS  Google Scholar 

  162. Klos KS, Zhou X, Lee S, Zhang L, Yang W, Nagata Y, Yu D (2003) Combined trastuzumab and paclitaxel treatment better inhibits ErbB-2-mediated angiogenesis in breast carcinoma through a more effective inhibition of Akt than either treatment alone. Cancer 98:1377–85

    CAS  PubMed  Google Scholar 

  163. Khalili P, Arakelian A, Chen GP, Singh G, Rabbani SA (2005) Effect of herceptin on the development and progression of skeletal metastases in a xenograft model of human breast cancer. Oncogene 24:6657–6666

    CAS  PubMed  Google Scholar 

  164. Cameron D, Casey M, Press M, Lindquist D, Pienkowski T, Romieu CG, Chan S, Jagiello-Gruszfeld A, Kaufman B, Crown J et al (2008) A phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses. Breast Cancer Res Treat 112:533–543

    CAS  PubMed  Google Scholar 

  165. Pivot X, Semiglazov V, Żurawski B, Allerton R, Fabi A, Ciruelos E, Parikh R, Desilvio M, Santillana S, Swaby R (2012) CEREBEL (EGF111438): an open label randomized phase III study comparing the incidence of CNS metastases in patients (pts) with HER2+ metastatic breast cancer. European Society for Medical Oncology Congress, Vienna

  166. Gril B, Palmieri D, Bronder JL, Herring JM, Vega-Valle E, Feigenbaum L, Liewehr DJ, Steinberg SM, Merino MJ, Rubin SD et al (2008) Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain. J Natl Cancer Inst 100:1092–1103

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Krop ILN, Blackwell K, Guardino E, Huober J, Lu M, Miles D, Samant M, Welslau M, Diéras V (2013) Efficacy and safety of trastuzumab emtansine (T-DM1) vs lapatinib plus capecitabine (XL) in patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (MBC) and central nervous system (CNS) metastases: Results from a retrospective exploratory analysis of EMILIA. San Antonio Breast Cancer Symposium, Texas

  168. Hiraga T, Hata K, Ikeda F, Kitagaki J, Fujimoto-Ouchi K, Tanaka Y, Yoneda T (2005) Preferential inhibition of bone metastases by 5′-deoxy-5-fluorouridine and capecitabine in the 4T1/luc mouse breast cancer model. Oncol Rep 14:695–699

    CAS  PubMed  Google Scholar 

  169. Yoshida T, Ozawa Y, Kimura T, Sato Y, Kuznetsov G, Xu S, Uesugi M, Agoulnik S, Taylor N, Funahashi Y et al (2014) Eribulin mesilate suppresses experimental metastasis of breast cancer cells by reversing phenotype from epithelial-mesenchymal transition (EMT) to mesenchymal-epithelial transition (MET) states. Br J Cancer 110:1497–1505

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Yoneda T, Sasaki A, Dunstan C, Williams PJ, Bauss F, DeClerck YA, Mundy GR (1997) Inhibition of osteolytic bone metastasis of breast cancer by combined treatment with the bisphosphonate ibandronate and tissue inhibitor of the matrix metalloproteinase-2. J Clin Investig 99:2509–2517

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Michigami T, Hiraga T, Williams PJ, Niewolna M, Nishimura R, Mundy GR, Yoneda T (2002) The effect of the bisphosphonate ibandronate on breast cancer metastasis to visceral organs. Breast Cancer Res Treat 75:249–258

    CAS  PubMed  Google Scholar 

  172. Steeg PS (1991) Genetic control of the metastatic phenotype. Semin Cancer Biol 2:105–110

    CAS  PubMed  Google Scholar 

  173. Herold CI, Chadaram V, Peterson BL, Marcom PK, Hopkins J, Kimmick GG, Favaro J, Hamilton E, Welch RA, Bacus S et al (2011) Phase II trial of dasatinib in patients with metastatic breast cancer using real-time pharmacodynamic tissue biomarkers of Src inhibition to escalate dosing. Clin Cancer Res 17:6061–6070

    CAS  PubMed  Google Scholar 

  174. Finn RS, Bengala C, Ibrahim N, Roche H, Sparano J, Strauss LC, Fairchild J, Sy O, Goldstein LJ (2011) Dasatinib as a single agent in triple-negative breast cancer: results of an open-label phase 2 study. Clin Cancer Res 17:6905–6913

    CAS  PubMed  Google Scholar 

  175. Mayer EL, Baurain JF, Sparano J, Strauss L, Campone M, Fumoleau P, Rugo H, Awada A, Sy O, Llombart-Cussac A (2011) A phase 2 trial of dasatinib in patients with advanced HER2-positive and/or hormone receptor-positive breast cancer. Clin Cancer Res 17:6897–6904

    CAS  PubMed  Google Scholar 

  176. Fornier MN, Morris PG, Abbruzzi A, D'Andrea G, Gilewski T, Bromberg J, Dang C, Dickler M, Modi S, Seidman AD et al (2011) A phase I study of dasatinib and weekly paclitaxel for metastatic breast cancer. Ann Oncol 22:2575–2581

    CAS  PubMed  Google Scholar 

  177. Campone M, Bondarenko I, Brincat S, Hotko Y, Munster PN, Chmielowska E, Fumoleau P, Ward R, Bardy-Bouxin N et al (2012) Phase II study of single-agent bosutinib, a Src/Abl tyrosine kinase inhibitor, in patients with locally advanced or metastatic breast cancer pretreated with chemotherapy. Ann Oncol 23:610–617

    CAS  PubMed  Google Scholar 

  178. Gucalp A, Sparano JA, Caravelli J, Santamauro J, Patil S, Abbruzzi A, Pellegrino C, Bromberg J, Dang C, Theodoulou M et al (2011) Phase II trial of saracatinib (AZD0530), an oral SRC-inhibitor for the treatment of patients with hormone receptor-negative metastatic breast cancer. Clin Breast Cancer 11:306–311

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Dhani NC, Burris HA, Siu LL, Camidge DR, Mileshkin LR, Xu H, Pierce KJ, Fahey NR, Fingert HJ, Shreeve SM (2010) Final report of phase I clinical, pharmacokinetic (PK), pharmacodynamic (PD) study of PF-00562271 targeting focal adhesion kinase (FAK) in patients (pts) with solid tumors. J Clin Oncol 28

  180. Stracke ML, Kohn EC, Aznavoorian SA, Wilson LA, Salomon D, Liotta LA, Schiffmann E (1988) Insulin-like growth factors stimulate chemotaxis in human melanoma cells. Biochem Biophys Res Commun 153:1076–1083

    CAS  PubMed  Google Scholar 

  181. Manish R, Patel JRI, Moore KN, Keegan M, Poli A, Padval M, Jones SF, Horobin J, Burris HA (2014) Phase 1/1b study of the FAK inhibitor defactinib (VS-6063) in combination with weekly paclitaxel for advanced ovarian cancer. J Cln Oncol 32:5521

    Google Scholar 

  182. Jones SF, Shapiro G, Bendell JC, Chen EX, Bedard P, Cleary JM, Pandya S, Pierce KJ, Houk B, Hosea N et al. (2011) Phase I study of PF-04554878, a second- generation focal adhesion kinase ( FAK) inhibitor, in patients with advanced solid tumors. J Clin Oncol 29

  183. Golubovskaya VM, Figel S, Ho BT, Johnson CP, Yemma M, Huang G, Zheng M, Nyberg C, Magis A, Ostrov DA et al (2012) A small molecule focal adhesion kinase (FAK) inhibitor, targeting Y397 site: 1-(2-hydroxyethyl)-3,5,7-triaza-1-azoniatricyclo 3.3.1.1(3,7) decane; bromide effectively inhibits FAK autophosphorylation activity and decreases cancer cell viability, clonogenicity and tumor growth in vivo. Carcinogenesis 33:1004–1013

    CAS  PubMed Central  PubMed  Google Scholar 

  184. Hariharan S, Gustafson D, Holden S, McConkey D, Davis D, Morrow M, Basche M, Gore L, Zang C, O’Bryant CL et al (2007) Assessment of the biological and pharmacological effects of the alpha(nu)beta(3) and alpha(nu)beta(5) integrin receptor antagonist, cilengitide (EMD 121974), in patients with advanced solid tumors. Ann Oncol 18:1400–1407

    CAS  PubMed  Google Scholar 

  185. Delbaldo C, Raymond E, Vera K, Hammershaimb L, Kaucic K, Lozahic S, Marty M, Faivre S (2008) Phase I and pharmacokinetic study of etaracizumab (Abegrin (TM)), a humanized monoclonal antibody against alpha(v)beta(3) integrin receptor, in patients with advanced solid tumors. Investig New Drugs 26:35–43

    CAS  Google Scholar 

  186. Thompson DS, Patnaik A, Bendell JC, Papadopoulos K, Infante JR, Mastico RA, Johnson D, Qin A, O’Leary JJ and Tolcher AW (2010) A phase I dose-escalation study of IMGN388 in patients with solid tumors. J Clin Oncol 28

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexandra S. Zimmer or Patricia S. Steeg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmer, A.S., Steeg, P.S. Meaningful prevention of breast cancer metastasis: candidate therapeutics, preclinical validation, and clinical trial concerns. J Mol Med 93, 13–29 (2015). https://doi.org/10.1007/s00109-014-1226-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-014-1226-2

Keywords

Navigation