Skip to main content

Advertisement

Log in

RhoB is associated with the anti-angiogenic effects of celiac patient transglutaminase 2-targeted autoantibodies

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

An Erratum to this article was published on 18 February 2012

Abstract

Celiac patient-derived anti-transglutaminase 2 (TG2) antibodies disturb several steps in angiogenesis, but the detailed molecular basis is not known. Therefore, we here analyzed by microarray technology the expression of a set of genes related to angiogenesis and endothelial cell biology in order to identify factors that could explain our previous data related to vascular biology in the context of celiac disease. To this end, in vitro models using human umbilical vein endothelial cells (HUVECs) or in vivo models of angiogenesis were used. A total of 116 genes were analyzed after treatment with celiac patient autoantibodies against TG2. Compared to treatment with control IgA celiac patient, total IgA induced a consistent expression change of 10 genes, the up-regulation of four and down-regulation of six. Of these genes the up-regulated RhoB was selected for further studies. RhoB expression was found to be up-regulated at both messenger RNA and protein level in response to celiac patient total IgA as well as anti-TG2-specific antibody derived from a celiac patient. Interestingly, down-regulation of RhoB by specific small interfering RNA treatment in endothelial cells could rescue the deranged endothelial length and tubule formation caused by celiac disease autoantibodies. RhoB function is controlled by its post-translational modification by farnesylation. This modification of RhoB required for its correct function can be prevented by the cholesterol lowering drug simvastatin, which was also able to abolish the anti-angiogenic effects of celiac anti-TG2 autoantibodies. Taken together, our results would suggest that RhoB plays a key role in the response of endothelial cells to celiac disease-specific anti-TG2 autoantibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Park D, Choi SS, Ha KS (2010) Transglutaminase 2: a multi-functional protein in multiple subcellular compartments. Amino Acids 39:619–631. doi:10.1007/s00726-010-0500-z

    Article  CAS  PubMed  Google Scholar 

  2. Thomazy V, Fesus L (1989) Differential expression of tissue transglutaminase in human cells. An immunohistochemical study. Cell Tissue Res 255:215–224

    Article  CAS  PubMed  Google Scholar 

  3. Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4:140–156

    Article  CAS  PubMed  Google Scholar 

  4. Jones RA, Kotsakis P, Johnson TS, Chau DY, Ali S, Melino G, Griffin M (2006) Matrix changes induced by transglutaminase 2 lead to inhibition of angiogenesis and tumor growth. Cell Death Differ 13:1442–1453

    Article  CAS  PubMed  Google Scholar 

  5. Esposito C, Caputo I (2005) Mammalian transglutaminases. Identification of substrates as a key to physiological function and physiopathological relevance. Febs J 272:615–631

    Article  CAS  PubMed  Google Scholar 

  6. Jabri B, Sollid LM (2009) Tissue-mediated control of immunopathology in coeliac disease. Nat Rev Immunol 9:858–870

    Article  CAS  PubMed  Google Scholar 

  7. Hernandez L, Green PH (2006) Extraintestinal manifestations of celiac disease. Curr Gastroenterol Rep 8:383–389

    Article  PubMed  Google Scholar 

  8. Dieterich W, Ehnis T, Bauer M, Donner P, Volta U, Riecken EO, Schuppan D (1997) Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med 3:797–801

    Article  CAS  PubMed  Google Scholar 

  9. Korponay-Szabo IR, Halttunen T, Szalai Z, Laurila K, Kiraly R, Kovacs JB, Fesus L, Maki M (2004) In vivo targeting of intestinal and extraintestinal transglutaminase 2 by coeliac autoantibodies. Gut 53:641–648

    Article  CAS  PubMed  Google Scholar 

  10. Myrsky E, Syrjanen M, Korponay-Szabo IR, Maki M, Kaukinen K, Lindfors K (2009) Altered small-bowel mucosal vascular network in untreated coeliac disease. Scand J Gastroenterol 44:162–167

    Google Scholar 

  11. Salmi TT, Collin P, Korponay-Szabo IR, Laurila K, Partanen J, Huhtala H, Kiraly R, Lorand L, Reunala T, Maki M et al (2006) Endomysial antibody-negative coeliac disease: clinical characteristics and intestinal autoantibody deposits. Gut 55:1746–1753

    Article  CAS  PubMed  Google Scholar 

  12. Kaukinen K, Peraaho M, Collin P, Partanen J, Woolley N, Kaartinen T, Nuutinen T, Halttunen T, Maki M, Korponay-Szabo I (2005) Small-bowel mucosal transglutaminase 2-specific IgA deposits in coeliac disease without villous atrophy: a prospective and randomized clinical study. Scand J Gastroenterol 40:564–572

    Article  CAS  PubMed  Google Scholar 

  13. Myrsky E, Kaukinen K, Syrjanen M, Korponay-Szabo IR, Maki M, Lindfors K (2008) Coeliac disease-specific autoantibodies targeted against transglutaminase 2 disturb angiogenesis. Clin Exp Immunol 152:111–119

    Article  CAS  PubMed  Google Scholar 

  14. Myrsky E, Caja S, Simon-Vecsei Z, Korponay-Szabo IR, Nadalutti C, Collighan R, Mongeot A, Griffin M, Maki M, Kaukinen K et al (2009) Celiac disease IgA modulates vascular permeability in vitro through the activity of transglutaminase 2 and RhoA. Cell Mol Life Sci 66:3375–3385

    Article  CAS  PubMed  Google Scholar 

  15. Caja S, Myrsky E, Korponay-Szabo IR, Nadalutti C, Sulic AM, Lavric M, Sblattero D, Marzari R, Collighan R, Mongeot A et al (2010) Inhibition of transglutaminase 2 enzymatic activity ameliorates the anti-angiogenic effects of coeliac disease autoantibodies. Scand J Gastroenterol 45:421–427

    Article  CAS  PubMed  Google Scholar 

  16. Simon-Vecsei Z, Király R, Bagossi P, Tóth B, Dahlbom I, Caja S, Csosz E, Lindfors K, Sblattero D, Nemes E, Mäki M, Fésüs L, Korponay-Szabó IR (2012) A single conformational transglutaminase 2 epitope contributed by three domains is critical for celiac antibody binding and effects. Proc Natl Acad Sci. doi:10.1073/pnas.1107811108

  17. Marzari R, Sblattero D, Florian F, Tongiorgi E, Not T, Tommasini A, Ventura A, Bradbury A (2001) Molecular dissection of the tissue transglutaminase autoantibody response in celiac disease. J Immunol 166:4170–4176

    CAS  PubMed  Google Scholar 

  18. Di Niro R, Ziller F, Florian F, Crovella S, Stebel M, Bestagno M, Burrone O, Bradbury AR, Secco P, Marzari R et al (2007) Construction of miniantibodies for the in vivo study of human autoimmune diseases in animal models. BMC Biotechnol 7:46

    Article  PubMed  Google Scholar 

  19. Kroll TC, Wolfl S (2002) Ranking: a closer look on globalisation methods for normalisation of gene expression arrays. Nucleic Acids Res 30:e50

    Article  PubMed  Google Scholar 

  20. Singh US, Kunar MT, Kao YL, Baker KM (2001) Role of transglutaminase II in retinoic acid-induced activation of RhoA-associated kinase-2. EMBO J 20:2413–2423. doi:10.1093/emboj/20.10.2413

    Article  CAS  PubMed  Google Scholar 

  21. Akimov SS, Krylov D, Fleischman LF, Belkin AM (2000) Tissue transglutaminase is an integrin-binding adhesion coreceptor for fibronectin. J Cell Biol 148:825–838

    Article  CAS  PubMed  Google Scholar 

  22. Akimov SS, Belkin AM (2001) Cell surface tissue transglutaminase is involved in adhesion and migration of monocytic cells on fibronectin. Blood 98:1567–1576

    Article  CAS  PubMed  Google Scholar 

  23. Ghetie V, Hubbard JG, Kim JK, Tsen MF, Lee Y, Ward ES (1996) Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice. Eur J Immunol 26:690–696. doi:10.1002/eji.1830260327

    Article  CAS  PubMed  Google Scholar 

  24. Stamatakis K, Cernuda-Morollon E, Hernandez-Perera O, Perez-Sala D (2002) Isoprenylation of RhoB is necessary for its degradation. A novel determinant in the complex regulation of RhoB expression by the mevalonate pathway. J Biol Chem 277:49389–49396

    Article  CAS  PubMed  Google Scholar 

  25. Armstrong SA, Hannah VC, Goldstein JL, Brown MS (1995) CAAX geranylgeranyl transferase transfers farnesyl as efficiently as geranylgeranyl to RhoB. J Biol Chem 270:7864–7868

    Article  CAS  PubMed  Google Scholar 

  26. Abraham S, Kogata N, Fassler R, Adams RH (2008) Integrin beta1 subunit controls mural cell adhesion, spreading, and blood vessel wall stability. Circ Res 102:562–570

    Article  CAS  PubMed  Google Scholar 

  27. Carlson TR, Hu H, Braren R, Kim YH, Wang RA (2008) Cell-autonomous requirement for beta1 integrin in endothelial cell adhesion, migration and survival during angiogenesis in mice. Development 135:2193–2202

    Article  CAS  PubMed  Google Scholar 

  28. Clark RA, Folkvord JM, Nielsen LD (1986) Either exogenous or endogenous fibronectin can promote adherence of human endothelial cells. J Cell Sci 82:263–280

    CAS  PubMed  Google Scholar 

  29. Janiak A, Zemskov EA, Belkin AM (2006) Cell surface transglutaminase promotes RhoA activation via integrin clustering and suppression of the Src-p190RhoGAP signaling pathway. Mol Biol Cell 17:1606–1619

    Article  CAS  PubMed  Google Scholar 

  30. Adini I, Rabinovitz I, Sun JF, Prendergast GC, Benjamin LE (2003) RhoB controls Akt trafficking and stage-specific survival of endothelial cells during vascular development. Genes Dev 17:2721–2732

    Article  CAS  PubMed  Google Scholar 

  31. Sabatel C, Malvaux L, Bovy N, Deroanne C, Lambert V, Gonzalez ML, Colige A, Rakic JM, Noel A, Martial JA et al (2011) MicroRNA-21 exhibits antiangiogenic function by targeting RhoB expression in endothelial cells. PLoS One 6:e16979

    Article  CAS  PubMed  Google Scholar 

  32. Caputo I, Lepretti M, Secondo A, Martucciello S, Paolella G, Sblattero D, Barone MV, Esposito C (2011) Anti-tissue transglutaminase antibodies activate intracellular tissue transglutaminase by modulating cytosolic Ca(2+) homeostasis. Amino Acids. doi:10.1007/s00726-011-1120-y

  33. Ho TT, Merajver SD, Lapiere CM, Nusgens BV, Deroanne CF (2008) RhoA-GDP regulates RhoB protein stability. Potential involvement of RhoGDIalpha. J Biol Chem 283:21588–21598

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Celiac Disease Study Group has been financially supported by the Academy of Finland, the Sigrid Juselius Foundation, the Pediatric Research Foundation, the Competitive Research Funding of the Tampere University Hospital, the Research Fund of the Finnish Coeliac Society, the Hungarian Scientific Research Fund (OTKA K61868), Compagnia Sanpaolo, and the European Commission (contract numbers PIA-GA-2010-251506 and PERG08-GA-2010-277049).

Disclosure of potential conflict of interests

The authors declare no conflict of interests related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katri Lindfors.

Additional information

S. Martucciello and M. Lavric contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martucciello, S., Lavric, M., Boglarka, T. et al. RhoB is associated with the anti-angiogenic effects of celiac patient transglutaminase 2-targeted autoantibodies. J Mol Med 90, 817–826 (2012). https://doi.org/10.1007/s00109-011-0853-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-011-0853-0

Keywords

Navigation