Skip to main content

Advertisement

Log in

Spinophilin regulates central angiotensin II-mediated effect on blood pressure

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Central angiotensin II (AngII) plays an important role in the regulation of the sympathetic nervous system. The underlining molecular mechanisms are largely unknown. Spinophilin (SPL) is a regulator of G protein-coupled receptor signaling. Deletion of SPL induces sympathetically mediated arterial hypertension in mice. We tested the hypothesis that SPL restrains blood pressure (BP) by regulating AngII activity. We equipped SPL−/− and SPL+/+ mice with telemetric devices and applied AngII (1.0 mg kg−1 day−1, minipumps) or the AngII subtype 1 receptor (AT1-R) blocker valsartan (50 mg kg−1 day−1, gavage). We assessed autonomic nervous system activity through intraperitoneal application of trimethaphan, metoprolol, and atropine. We also tested the effect of intracerebroventricular (icv) AngII on blood pressure in SPL−/− and in SPL+/+ mice. Chronic infusion of AngII upregulates SPL expression in the hypothalamus of SPL+/+ mice. Compared with SPL+/+ mice, SPL−/− mice showed a greater increase in daytime BP with AngII (19.2 ± 0.8 vs. 13.5 ± 1.6 mmHg, p < 0.05). SPL−/− showed a greater depressor response to valsartan. BP and heart rate decreased more with trimethaphan and metoprolol in AngII-treated SPL−/− than in AngII-treated SPL+/+ mice. SPL−/− mice responded more to icv AngII. Furthermore, brainstem AT1-R and AngII type 2 receptor (AT2-R) expression was reduced in SPL−/− mice. AngII treatment normalized AT1-R and AT2-R expression levels. In summary, our findings suggest that SPL restrains AngII-mediated sympathetic nervous system activation. SPL is a hitherto unrecognized molecule with regard to central blood pressure control and may pave the way to novel strategies for the treatment of hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li YF, Wang W, Mayhan WG, Patel KP (2006) Angiotensin-mediated increase in renal sympathetic nerve discharge within the PVN: role of nitric oxide. Am J Physiol Regul Integr Comp Physiol 290:R1035–R1043

    Article  PubMed  CAS  Google Scholar 

  2. Zucker IH, Wang W, Pliquett RU, Liu JL, Patel KP (2001) The regulation of sympathetic outflow in heart failure. The roles of angiotensin II, nitric oxide, and exercise training. Ann N Y Acad Sci 940:431–443

    Article  PubMed  CAS  Google Scholar 

  3. Zucker IH (2002) Brain angiotensin II: new insights into its role in sympathetic regulation. Circ Res 90:503–505

    Article  PubMed  CAS  Google Scholar 

  4. Rabbitts JA, Strom NA, Sawyer JR, Curry TB, Dietz NM, Roberts SK, Kingsley-Berg SM, Charkoudian N (2009) Influence of endogenous angiotensin II on control of sympathetic nerve activity in human dehydration. J Physiol 587:5441–5449

    Article  PubMed  CAS  Google Scholar 

  5. Allikmets K (2007) Aliskiren—an orally active renin inhibitor. Review of pharmacology, pharmacodynamics, kinetics, and clinical potential in the treatment of hypertension. Vasc Health Risk Manag 3:809–815

    PubMed  CAS  Google Scholar 

  6. Atlas SA (2007) The renin-angiotensin aldosterone system: pathophysiological role and pharmacologic inhibition. J Manag Care Pharm 13:9–20

    PubMed  Google Scholar 

  7. Abramow-Newerly M, Roy AA, Nunn C, Chidiac P (2006) RGS proteins have a signalling complex: interactions between RGS proteins and GPCRs, effectors, and auxiliary proteins. Cell Signal 18:579–591

    Article  PubMed  CAS  Google Scholar 

  8. Brady AE, Limbird LE (2002) G protein-coupled receptor interacting proteins: emerging roles in localization and signal transduction. Cell Signal 14:297–309

    Article  PubMed  CAS  Google Scholar 

  9. Gross V, Tank J, Obst M, Plehm R, Blumer KJ, Diedrich A, Jordan J, Luft FC (2005) Autonomic nervous system and blood pressure regulation in RGS2-deficient mice. Am J Physiol Regul Integr Comp Physiol 288:R1134–R1142

    Article  PubMed  CAS  Google Scholar 

  10. Hercule HC, Tank J, Plehm R, Wellner M, da Costa Goncalves AC, Gollasch M, Diedrich A, Jordan J, Luft FC, Gross V (2007) Regulator of G protein signalling 2 ameliorates angiotensin II-induced hypertension in mice. Exp Physiol 92:1014–1022

    Article  PubMed  CAS  Google Scholar 

  11. Heximer SP, Knutsen RH, Sun X, Kaltenbronn KM, Rhee MH, Peng N, Oliveira-dos-Santos A, Penninger JM, Muslin AJ, Steinberg TH et al (2003) Hypertension and prolonged vasoconstrictor signaling in RGS2-deficient mice. J Clin Invest 111:445–452

    PubMed  CAS  Google Scholar 

  12. Obst M, Tank J, Plehm R, Blumer KJ, Diedrich A, Jordan J, Luft FC, Gross V (2006) NO-dependent blood pressure regulation in RGS2-deficient mice. Am J Physiol Regul Integr Comp Physiol 290:R1012–R1019

    Article  PubMed  CAS  Google Scholar 

  13. Tang KM, Wang GR, Lu P, Karas RH, Aronovitz M, Heximer SP, Kaltenbronn KM, Blumer KJ, Siderovski DP, Zhu Y et al (2003) Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nat Med 9:1506–1512

    Article  PubMed  CAS  Google Scholar 

  14. Wang X, Zeng W, Soyombo AA, Tang W, Ross EM, Barnes AP, Milgram SL, Penninger JM, Allen PB, Greengard P et al (2005) Spinophilin regulates Ca2+ signalling by binding the N-terminal domain of RGS2 and the third intracellular loop of G-protein-coupled receptors. Nat Cell Biol 7:405–411

    Article  PubMed  CAS  Google Scholar 

  15. Wang Q, Zhao J, Brady AE, Feng J, Allen PB, Lefkowitz RJ, Greengard P, Limbird LE (2004) Spinophilin blocks arrestin actions in vitro and in vivo at G protein-coupled receptors. Science 304:1940–1944

    Article  PubMed  CAS  Google Scholar 

  16. Richman JG, Brady AE, Wang Q, Hensel JL, Colbran RJ, Limbird LE (2001) Agonist-regulated Interaction between alpha2-adrenergic receptors and spinophilin. J Biol Chem 276:15003–15008

    Article  PubMed  CAS  Google Scholar 

  17. Smith FD, Oxford GS, Milgram SL (1999) Association of the D2 dopamine receptor third cytoplasmic loop with spinophilin, a protein phosphatase-1-interacting protein. J Biol Chem 274:19894–19900

    Article  PubMed  CAS  Google Scholar 

  18. Bernstein LS, Ramineni S, Hague C, Cladman W, Chidiac P, Levey AI, Hepler JR (2004) RGS2 binds directly and selectively to the M1 muscarinic acetylcholine receptor third intracellular loop to modulate Gq/11alpha signaling. J Biol Chem 279:21248–21256

    Article  PubMed  CAS  Google Scholar 

  19. Kimura T, Allen PB, Nairn AC, Caplan MJ (2007) Arrestins and spinophilin competitively regulate Na+, K+-ATPase trafficking through association with a large cytoplasmic loop of the Na+, K+-ATPase. Mol Biol Cell 18:4508–4518

    Article  PubMed  CAS  Google Scholar 

  20. Wang Q, Limbird LE (2002) Regulated interactions of the alpha 2A adrenergic receptor with spinophilin, 14-3-3zeta, and arrestin 3. J Biol Chem 277:50589–50596

    Article  PubMed  CAS  Google Scholar 

  21. da Costa-Goncalves AC, Tank J, Plehm R, Diedrich A, Todiras M, Gollasch M, Heuser A, Wellner M, Bader M, Jordan J et al (2008) Role of the multidomain protein spinophilin in blood pressure and cardiac function regulation. Hypertension 52:702–707

    Article  PubMed  Google Scholar 

  22. Feng J, Yan Z, Ferreira A, Tomizawa K, Liauw JA, Zhuo M, Allen PB, Ouimet CC, Greengard P (2000) Spinophilin regulates the formation and function of dendritic spines. Proc Natl Acad Sci USA 97:9287–9292

    Article  PubMed  CAS  Google Scholar 

  23. Liu YH, Xu J, Yang XP, Yang F, Shesely E, Carretero OA (2002) Effect of ACE inhibitors and angiotensin II type 1 receptor antagonists on endothelial NO synthase knockout mice with heart failure. Hypertension 39:375–381

    Article  PubMed  CAS  Google Scholar 

  24. Miller BH, Olson SL, Levine JE, Turek FW, Horton TH, Takahashi JS (2006) Vasopressin regulation of the proestrous luteinizing hormone surge in wild-type and Clock mutant mice. Biol Reprod 75:778–784

    Article  PubMed  CAS  Google Scholar 

  25. Janke J, Engeli S, Gorzelniak K, Sharma AM (2001) Extraction of total RNA from adipocytes. Horm Metab Res 33:213–215

    Article  PubMed  CAS  Google Scholar 

  26. Ferguson AV, Washburn DL, Latchford KJ (2001) Hormonal and neurotransmitter roles for angiotensin in the regulation of central autonomic function. Exp Biol Med (Maywood) 226:85–96

    CAS  Google Scholar 

  27. Matsumura Y, Hasser EM, Bishop VS (1989) Central effect of angiotensin II on baroreflex regulation in conscious rabbits. Am J Physiol 256:R694–R700

    PubMed  CAS  Google Scholar 

  28. Pawlak R, Napiorkowska-Pawlak D, Takada Y, Urano T, Nagai N, Ihara H, Takada A (2001) The differential effect of angiotensin II and angiotensin 1–7 on norepinephrine, epinephrine, and dopamine concentrations in rat hypothalamus: the involvement of angiotensin receptors. Brain Res Bull 54:689–694

    Article  PubMed  CAS  Google Scholar 

  29. Head GA, Williams NS (1992) Hemodynamic effects of central angiotensin I, II, and III in conscious rabbits. Am J Physiol 263:R845–R851

    PubMed  CAS  Google Scholar 

  30. Saigusa T, Iriki M, Arita J (1996) Brain angiotensin II tonically modulates sympathetic baroreflex in rabbit ventrolateral medulla. Am J Physiol 271:H1015–H1021

    PubMed  CAS  Google Scholar 

  31. Lazartigues E, Lawrence AJ, Lamb FS, Davisson RL (2004) Renovascular hypertension in mice with brain-selective overexpression of AT1a receptors is buffered by increased nitric oxide production in the periphery. Circ Res 95:523–531

    Article  PubMed  CAS  Google Scholar 

  32. Samson WK, Bagley SL, Ferguson AV, White MM (2007) Hypocretin/orexin type 1 receptor in brain: role in cardiovascular control and the neuroendocrine response to immobilization stress. Am J Physiol Regul Integr Comp Physiol 292:R382–R387

    Article  PubMed  CAS  Google Scholar 

  33. Fontes MA, Xavier CH, de Menezes RC, Dimicco JA (2011) The dorsomedial hypothalamus and the central pathways involved in the cardiovascular response to emotional stress. Neuroscience 184:64–74

    Article  PubMed  CAS  Google Scholar 

  34. Iida N (1995) Different flow regulation mechanisms between celiac and mesenteric vascular beds in conscious rats. Hypertension 25:260–265

    PubMed  CAS  Google Scholar 

  35. Allen PB, Ouimet CC, Greengard P (1997) Spinophilin, a novel protein phosphatase 1 binding protein localized to dendritic spines. Proc Natl Acad Sci 94:9956–9961

    Article  PubMed  CAS  Google Scholar 

  36. Tank J, Obst M, Diedrich A, Brychta RJ, Blumer KJ, Heusser K, Jordan J, Luft FC, Gross V (2007) Sympathetic nerve traffic and circulating norepinephrine levels in RGS2-deficient mice. Auton Neurosci 136:52–57

    Article  PubMed  CAS  Google Scholar 

  37. Milligan G (2003) Constitutive activity and inverse agonists of G protein-coupled receptors: a current perspective. Mol Pharmacol 64:1271–1276

    Article  PubMed  CAS  Google Scholar 

  38. Dampney RA, Coleman MJ, Fontes MA, Hirooka Y, Horiuchi J, Li YW, Polson JW, Potts PD, Tagawa T (2002) Central mechanisms underlying short- and long-term regulation of the cardiovascular system. Clin Exp Pharmacol Physiol 29:261–268

    Article  PubMed  CAS  Google Scholar 

  39. Mitra AK, Gao L, Zucker IH (2010) Angiotensin II-induced upregulation of AT(1) receptor expression: sequential activation of NF-kappaB and Elk-1 in neurons. Am J Physiol Cell Physiol 299:C561–C569

    Article  PubMed  CAS  Google Scholar 

  40. Nunes FC, Braga VA (2011) Chronic angiotensin II infusion modulates angiotensin II type I receptor expression in the subfornical organ and the rostral ventrolateral medulla in hypertensive rats. J Renin Angiotensin Aldosterone Syst (in press)

  41. Saavedra JM, Benicky J, Zhou J (2006) Angiotensin II: multitasking in the brain. J Hypertens 24:S131–S137

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ilona Kamer, Lisa Zocher, and Yoland Marie Anistan (Max Delbrück Center for Molecular Medicine, Berlin, Germany; Experimental and Clinical Research Center, Medical Faculty of the Charité) for technical assistance. EK (KL1415/4-2) and MK (GO766/12-1, GO766/15-1) were supported by DFG. The authors are not aware of interest conflicts.

Sponsorship

The Deutsche Forschungsgemeinschaft supported VG (Gr 1112/13-1) and ACCG (Kl1415/3-2). MAPF was supported by CNPq/CAPES-Probral, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey C. da Costa Goncalves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Costa Goncalves, A.C., Fontes, M.A.P., Klussmann, E. et al. Spinophilin regulates central angiotensin II-mediated effect on blood pressure. J Mol Med 89, 1219–1229 (2011). https://doi.org/10.1007/s00109-011-0793-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-011-0793-8

Keywords

Navigation