Skip to main content
Log in

Heme oxygenase and carbon monoxide initiate homeostatic signaling

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Carbon monoxide (CO), a gaseous second messenger, arises in biological systems during the oxidative catabolism of heme by the heme oxygenase (HO) enzymes. Many biological functions of HO, such as regulation of vessel tone, smooth muscle cell proliferation, neurotransmission, and platelet aggregation, and anti-inflammatory and antiapoptotic effects have been attributed to its enzymatic product, CO. How can such diverse actions be achieved by a simple diatomic gas; can its protective effects be explained via regulation of a common signaling pathway? A number of the known signaling effects of CO depend on stimulation of soluble guanylate cyclase and/or activation of mitogen-activated protein kinases. The consequences of this activation remain unknown but appear to differ depending on cell type and circumstances. The majority of studies reporting a protective role of CO focus on pathways initiated by the pathological stimulus (e.g., lipopolysaccharide, hypoxia, balloon injury, tumor necrosis factor α, etc.) and its consequential modulation by CO. What has been less studied is the manner in which CO exposure alone modulates the molecular machinery of the cell so that a subsequent stress stimulus will elicit a homeostatic response as opposed to one that is chaotic and disordered. CO potentially interacts with other intracellular hemoprotein targets, although little is known about the functional significance of such interactions other then the known targets including mitochondrial oxidases, oxygen sensors, and nitric oxide synthases. The earliest response of a cell exposed to low concentrations of CO is clearly an increase in reactive oxygen species formation that we define as oxidative conditioning. This has important consequences for inflammation, proliferation, mitochondria biogenesis, and apoptosis. Within this review, we will highlight recent research on the molecular events underlying the physiologic effects of CO—which lead to cytoprotective conditioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Maines M (1988) Heme oxygenase: function, multiplicity, regulatory mechanisms and clinical implications. FASEB J 2:2557–2568

    PubMed  CAS  Google Scholar 

  2. Ryter S, Alam J, Choi A (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86:583–650

    Article  PubMed  CAS  Google Scholar 

  3. McCoubrey W, Ewing J, Maines M (1992) Human heme oxygenase-2: characterization and expression of a full-length cDNA and evidence suggesting that the two HO-2 transcripts may differ by choice of polyadenylation signal. Arch Biochem Biophys 295:13–20

    Article  PubMed  CAS  Google Scholar 

  4. McCoubrey W, Huang T, Maines M (1997) Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur J Biochem 247:725–732

    Article  PubMed  CAS  Google Scholar 

  5. Shibahara S, Muller R, Taguchi H (1987) Transcriptional control of rat heme oxygenase by heat shock. J Biol Chem 262:12889–12892

    PubMed  CAS  Google Scholar 

  6. Duckers H, Boehm M, True A, Yet S, Park J, Clinton W, Lee M, Nable E (2001) Heme oxygenase-1 protects against vascular constriction and proliferation. Nat Med 7:693–698

    Article  PubMed  CAS  Google Scholar 

  7. Fujita T, Toda K, Karimova A, Yan S, Naka Y, Yet S, Pinsky D (2001) Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat Med 7:598–604

    Article  PubMed  CAS  Google Scholar 

  8. Soares M, Lin Y, Anrather J, Csizmadia E, Takigami K, Sato K, Grey S, Colvin R, Choi A, Poss K, Bach F (1998) Expression of heme oxygenase-1 can determine cardiac xenograft survival. Nat Med 4:1073–1077

    Article  PubMed  CAS  Google Scholar 

  9. Lerner-Marmarosh N, Shen J, Torno M, Kravets A, Hu Z, Maines M (2005) Human biliverdin reductase: a member of the insulin receptor substrate family with serine/threonine/tyrosine kinase activity. Proc Natl Acad Sci USA 102:7109–14

    Article  PubMed  CAS  Google Scholar 

  10. Wegiel B, Baty C, Csizmadia E, Scott J, Gallo D, Chin B, Zuckerbraun B, Alam J, Bach F, Otterbein L (2007) Cell surface biliverdin reductase regulates innate immunity in response to endotoxin. J Clin Invest (in press)

  11. D’Amico G, Lam F, Hagen T, Moncada S (2006) Inhibition of cellular respiration by endogenously produced carbon monoxide. J Cell Sci 119:2291–2298

    Article  PubMed  CAS  Google Scholar 

  12. Verma A, Hirsch D, Glatt C, Ronnett G, Snyder S (1993) Carbon monoxide: a putative neural messenger. Science 259:381–384

    Article  PubMed  CAS  Google Scholar 

  13. Motterlini R, Mann BE, Johnson T, Clark J, Foresti R, Green C (2003) Bioactivity and pharmacological actions of carbon monoxide-releasing molecules. Curr Pharm Des 9:2525–2539

    Article  PubMed  CAS  Google Scholar 

  14. Otterbein LE, Zuckerbraun B, Haga M, Liu F, Song R, Usheva A, Stachulak C, Bodyak N, Smith R, Csizmadia E, Tyagi S, Akamatsu Y, Flavell R, Billiar T, Tzeng E, Bach F, Choi A, Soares M (2003) Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nat Med 9:183–190

    Article  PubMed  CAS  Google Scholar 

  15. Sato K, Balla J, Otterbein L, Smith R, Brousar S, Lin Y, Csizmadia E, Sevigny J, Robson S, Vercelotti G, Choi A, Bach F, Soares M (2001) Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. J Immunol 166:4185–4194

    PubMed  CAS  Google Scholar 

  16. Song R, Kubo M, Morse D, Zhou Z, Zhang X, Dauber J, Fabisiak J, Alber S, Watkins S, Zuckerbraun B, Otterbein L, Ning W, Oury R, Lee P, McCurry K, Choi A (2003) Carbon monoxide induces cytoprotection in rat orthotopic lung transplantation via anti-inflammatory and anti-apoptotic effects. Am J Pathol 163:231–242

    PubMed  CAS  Google Scholar 

  17. Zuckerbraun B, Billiar T, Otterbein S, Kim P, Liu F, Choi A, Bach F, Otterbein LE (2003) Carbon monoxide protects against liver failure through nitric oxide-induced heme oxygenase 1. J Exp Med 198:1707–1716

    Article  PubMed  CAS  Google Scholar 

  18. Zuckerbraun S, Chin B, Wegiel B, Billiar T, Csizmadia E, Rao J, Shimoda L, Ifedigbo E, Kanno S, Otterbein LE (2006) Carbon monoxide reverses established pulmonary hypertension. J Exp Med 203:2109–2119

    Article  PubMed  CAS  Google Scholar 

  19. Wagener F, Volk H, Willis D, Abraham N, Soares M, Adema G, Figdor CG (2003) Different faces of the heme–heme oxygenase system in inflammation. Pharmacol Rev 55:551–571

    Article  PubMed  CAS  Google Scholar 

  20. Kourembanas S (2002) Hypoxia and carbon monoxide in the vasculature. Antioxid Redox Signal 4:291–299

    Article  PubMed  CAS  Google Scholar 

  21. Otterbein LE, Otterbein S, Ifedigbo E, Liu F, Morse D, Fearns C, Ulevitch R, Knickelbein R, Flavell R, Choi A (2003) MKK3 mitogen-activated protein kinase pathway mediates carbon monoxide-induced protection against oxidant-induced lung injury. Am J Pathol 163:2555–2563

    PubMed  CAS  Google Scholar 

  22. Taille C, El-Benna J, Lanone S, Boczkowski J, Motterlini R (2005) Mitochondrial respiratory chain and NAD(P)H oxidase are targets for the antiproliferative effect of carbon monoxide in human airway smooth muscle. J Biol Chem 280:25350–25360

    Article  PubMed  CAS  Google Scholar 

  23. Brouard S, Berberat P, Tobiasch E, Seldon M, Bach F, Soares M (2002) Heme oxygenase-1-derived carbon monoxide requires the activation of transcription factor NF-kappa B to protect endothelial cells from tumor necrosis factor-alpha-mediated apoptosis. J Biol Chem 277:17950–17961

    Article  PubMed  CAS  Google Scholar 

  24. Zhang X, Shan P, Alam J, Fu X, Lee P (2005) Carbon monoxide differentially modulates STAT1 and STAT3 and inhibits apoptosis via a phosphatidylinositol 3-kinase/Akt and p38 kinase-dependent STAT3 pathway during anoxia-reoxygenation injury. J Biol Chem 280:8714–8721

    Article  PubMed  CAS  Google Scholar 

  25. Otterbein LE, Bach F, Alam J, Soares M, Tao H, Wysk M, Davis R, Flavell R, Choi A (2000) Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 6:422–428

    Article  PubMed  CAS  Google Scholar 

  26. Zhang X, Shan P, Jiang G, Zhang S, Otterbein LE, Fu X, Lee P (2006) Endothelial STAT3 is essential for the protective effects of HO-1 in oxidant-induced lung injury. FASEB J 20:2156–2158

    Article  PubMed  CAS  Google Scholar 

  27. Bilban M, Bach F, Otterbein S, Ifedigboe E, deCosta d’Avila J, Esterbauer H, Chin B, Usheva A, Robson S, Wagner O, Otterbein LE (2006) Carbon monoxide orchestrates a protective response through PPARgamma. Immunity 24:601–610

    Article  PubMed  CAS  Google Scholar 

  28. Chin B, Jiang G, Wegiel B, Wang H, MacDonald T, Zhang X, Gallo D, Csizmadia E, Bach F, Lee P, Otterbein L (2007) Hypoxia-inducible factor 1{alpha} stabilization by carbon monoxide results in cytoprotective preconditioning. Proc Natl Acad Sci USA 104:5109–5114

    Article  PubMed  CAS  Google Scholar 

  29. Sarady J, Otterbein S, Liu F, Otterbein LE, Choi A (2002) Carbon monoxide modulates endotoxin-induced production of granulocyte macrophage colony-stimulating factor in macrophages. Am J Respir Cell Mol Biol 27:739–745

    PubMed  CAS  Google Scholar 

  30. Roberts P, Youn H, Kerby R (2004) CO-sensing mechanisms. Microbiol Mol Biol Rev 68:453–473

    Article  PubMed  CAS  Google Scholar 

  31. Dioum EM, Rutter J, Tuckerman J, Gonzalez G, Gilles-Gonzalez M, McKnight S (2002) NPAS2: a gas-responsive transcription factor. Science 298:2385–2387

    Article  PubMed  CAS  Google Scholar 

  32. Ryter S, Otterbein LE (2004) Carbon monoxide in biology and medicine. Bioessays 26:270–280

    Article  PubMed  CAS  Google Scholar 

  33. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  PubMed  CAS  Google Scholar 

  34. Pittock S, Norby S, Grande J, Croatt A, Bren G, Badley A, Caplice N, Griffin M, Nath K (2005) MCP-1 is up-regulated in unstressed and stressed HO-1 knockout mice: Pathophysiologic correlates. Kidney Int 68:611–622

    Article  PubMed  CAS  Google Scholar 

  35. Otterbein LE, Soares MP, Yamashita K, Bach FH (2003) Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol 24:449–455

    Article  PubMed  CAS  Google Scholar 

  36. Lee TS, Chau LY (2002) Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nat Med 8:240–246

    Article  PubMed  CAS  Google Scholar 

  37. Boczkowski J, Poderoso JJ, Motterlini R (2006) CO-metal interaction: vital signaling from a lethal gas. Trends Biochem Sci 31:614–621

    Article  PubMed  CAS  Google Scholar 

  38. Zuckerbraun BS, Chin BY, Bilban M, deCosta d’Avila J, Rao J, Billiar T, Otterbein LE (2007) Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species. FASEB J 21:1099–106

    Article  PubMed  CAS  Google Scholar 

  39. Veal EA, Day AM, Morgan BA (2007) Hydrogen Peroxide Sensing and Signaling. Mol Cell 26:1–14

    Article  PubMed  CAS  Google Scholar 

  40. Geiszt M, Leto T (2004) The Nox family of NAD(P)H oxidases: host defense and beyond. J Biol Chem 279:51715–51718

    Article  PubMed  CAS  Google Scholar 

  41. Gulati P, Klohn P, Krug H, Gottlicher M, Markova B, Bohmer F, Herrlich P (2001) Redox regulation in mammalian signal transduction. IUBMB Life 52:25–28

    PubMed  CAS  Google Scholar 

  42. Baines C, Goto M, Downey J (1997) Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol 29:207–216

    Article  PubMed  CAS  Google Scholar 

  43. Ushio-Fukai M (2006) Localizing NADPH oxidase-derived ROS. Sci STKE 349:re8

    Article  Google Scholar 

  44. Varez-Maqueda M, El B, Alba G, Monteseirin J, Chacon P, Vega A, Martin-Nieto J, Bedoya F, Pintado E, Sobrino F (2004) 15-deoxy-delta 12,14-prostaglandin J2 induces heme oxygenase-1 gene expression in a reactive oxygen species-dependent manner in human lymphocytes. J Biol Chem 279:21929–21937

    Article  CAS  Google Scholar 

  45. Zhang J, Piantadosi CA (1992) Mitochondrial oxidative stress after carbon monoxide hypoxia in the rat brain. J Clin Invest 90:1193–1199

    Article  PubMed  CAS  Google Scholar 

  46. Raha S, Robinson BH (2001) Mitochondria, oxygen free radicals, and apoptosis. Am J Med Genet 106:62–70

    Article  PubMed  CAS  Google Scholar 

  47. Sablina A, Budanov A, Ilyinskaya G, Agapova L, Kravchenko J, Chumakov P (2005) The antioxidant function of the p53 tumor suppressor. Nat Med 11:1306–1313

    Article  PubMed  CAS  Google Scholar 

  48. Bossis G, Melchior F (2006) SUMO: regulating the regulator. Cell Div 1:13

    Article  PubMed  CAS  Google Scholar 

  49. Meng T, Hsu S, Tonks NK (2005) Development of a modified in-gel assay to identify protein tyrosine phosphatases that are oxidized and inactivated in vivo. Methods 35:28–36

    Article  PubMed  CAS  Google Scholar 

  50. Tonks NK (2005) Redox redux: revisiting PTPs and the control of cell signaling. Cell 121:667–70

    Article  PubMed  CAS  Google Scholar 

  51. Boveris A, Chance B (1973) The mitochondria generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716

    PubMed  CAS  Google Scholar 

  52. Tsan M (2001) Superoxide dismutase and pulmonary oxygen toxicity: lessons from transgenic and knockout mice. Int J Mol Med 7:13–92 (Review)

    PubMed  CAS  Google Scholar 

  53. Alonso R, Cardellach F, Lopez S, Casademont J, Miro O (2003) Carbon monoxide specifically inhibits cytochrome c oxidase of human mitochondrial respiratory chain. Pharmacol Toxicol 93:142–146

    Article  PubMed  CAS  Google Scholar 

  54. Brown D, Piantadosi A (1990) In vivo binding of carbon monoxide to cytochrome c oxidase in rat brain. J Appl Physiol 68:604–610

    PubMed  CAS  Google Scholar 

  55. Hansen B, Nicholls P (1978) Control of respiration in proteoliposomes containing cytochrome aa3. II. Inhibition by carbon monoxide and azide. Biochim Biophys Acta 502:400–408

    Article  PubMed  CAS  Google Scholar 

  56. Piantadosi CA (2002) Biological chemistry of carbon monoxide. Antioxid Redox Signal 4:259–270

    Article  PubMed  CAS  Google Scholar 

  57. Stone J, Yang S (2006) Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal 8:243–270

    Article  PubMed  CAS  Google Scholar 

  58. Suliman H, Carraway M, Tatro L, Piantadosi C (2007) A new activating role for CO in cardiac mitochondrial biogenesis. J Cell Sci 120:299–308

    Article  PubMed  CAS  Google Scholar 

  59. Guha M, O’Connell MA, Pawlinski R, Hollis A, McGovern P, Yan S, Stern D, Mackman N (2001) Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor alpha expression by inducing Elk-1 phosphorylation and Egr-1 expression. Blood 98:1429–1439

    Article  PubMed  CAS  Google Scholar 

  60. Yan SF, Fujita T, Lu J, Okada K, Shan Z, Mackman N, Pinsky D, Stern D (2000) Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nat Med 6:1355–1361

    Article  PubMed  CAS  Google Scholar 

  61. Mishra S, Fujita T, Lama V, Nam D, Liao H, Okada M, Minamoto K, Yoshikawa Y, Harada H, Pinsky D (2006) Carbon monoxide rescues ischemic lungs by interrupting MAPK-driven expression of early growth response 1 gene and its downstream target genes. Proc Natl Acad Sci USA 103:5191–5196

    Article  PubMed  CAS  Google Scholar 

  62. Okada M, Yan S, Pinsky J (2002) Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) activation suppresses ischemic induction of Egr-1 and its inflammatory gene targets. FASEB J 16:1861–1868

    Article  PubMed  CAS  Google Scholar 

  63. Ricote M, Li A, Willson T, Kelly C, Glass C (1998) The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391:79–82

    Article  PubMed  CAS  Google Scholar 

  64. Jiang C, Ting AT, Seed B (1998) PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391:82–86

    Article  PubMed  CAS  Google Scholar 

  65. Chawla A, Barak Y, Nagy L, Liao D, Tontonoz P, Evans R (2001) PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med 7:48–52

    Article  PubMed  CAS  Google Scholar 

  66. Simonin MA, Bordji K, Boyault S, Bianchi A, Gouze E, Becuwe P, Dauca M, Netter P, Terlain B (2002) PPAR-gamma ligands modulate effects of LPS in stimulated rat synovial fibroblasts. Am J Physiol Cell Physiol 282:C125–C133

    PubMed  CAS  Google Scholar 

  67. Theocharis S, Margeli A, Vielh P, Kouraklis G (2004) Peroxisome proliferator-activated receptor-gamma ligands as cell-cycle modulators. Cancer Treat Rev 30:545–554

    Article  PubMed  CAS  Google Scholar 

  68. Cheng S, Afif H, Martel-Pelletier J, Pelletier J, Li X, Farrajota K, Lavigne M, Fahmi H (2004) Activation of peroxisome proliferator-activated receptor gamma inhibits interleukin-1beta-induced membrane-associated prostaglandin E2 synthase-1 expression in human synovial fibroblasts by interfering with Egr-1. J Biol Chem 279:22057–22065

    Article  PubMed  CAS  Google Scholar 

  69. Kelly D, Campbell J, King T, Grant G, Jansson E, Coutts A, Pettersson S, Conway S (2004) Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat Immunol 5:104–112

    Article  PubMed  CAS  Google Scholar 

  70. Woo CH, Massett MP, Shishido T, Itoh S, Ding B, McClain C, Che W, Vulapalli S, Yan C, Abe J (2006) ERK5 activation inhibits inflammatory responses via peroxisome proliferator-activated receptor delta (PPARdelta) stimulation. J Biol Chem 281:32164–32174

    Article  PubMed  CAS  Google Scholar 

  71. Bacon A, Harris AL (2004) Hypoxia-inducible factors and hypoxic cell death in tumour physiology. Ann Med 36:530–539

    Article  PubMed  CAS  Google Scholar 

  72. Massague J, Blain S, Lo R (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103:295–309

    Article  PubMed  CAS  Google Scholar 

  73. Zhang D, Gutterman D (2007) Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol 292(5):H2023–H2031

    Article  PubMed  CAS  Google Scholar 

  74. Li J, Shah A (2004) Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol Regul Integr Comp Physiol 287:R1014–R1030

    PubMed  CAS  Google Scholar 

  75. Mueller C, Laude K, McNally J, Harrison D (2005) ATVB in focus: redox mechanisms in blood vessels. Arterioscler Thromb Vasc Biol 25:274–278

    Article  PubMed  CAS  Google Scholar 

  76. Watanabe N, Zmijewski JW, Takabe W, Umezu-Goto M, Le Goffe C, Sekine A, Landar A, Watanabe A, Aoki J, Arai H, Kodama T, Murphy M, Kalyanaraman R, Darley-Usmar V, Noguchi N (2006) Activation of mitogen-activated protein kinases by lysophosphatidylcholine-induced mitochondrial reactive oxygen species generation in endothelial cells. Am J Pathol 168:1737–1748

    Article  PubMed  CAS  Google Scholar 

  77. Quintero M, Colombo SL, Godfrey A, Moncada S (2006) Mitochondria as signaling organelles in the vascular endothelium. Proc Natl Acad Sci USA 103:5379–5384

    Article  PubMed  CAS  Google Scholar 

  78. Dulak J, Loboda A, Zagorska A, Jozkowicz A (2004) Complex role of heme oxygenase-1 in angiogenesis. Antioxid Redox Signal 6:858–866

    PubMed  CAS  Google Scholar 

  79. Wang X, Wang Y, Kim H, Ryter S, Choi A (2007) Carbon monoxide protects against hyperoxia-induced endothelial cell apoptosis by inhibiting reactive oxygen species formation. J Biol Chem 282:1718–1726

    Article  PubMed  CAS  Google Scholar 

  80. Fujimoto H, Ohno M, Ayabe S, Kobayashi H, Ishizaka N, Kimura H, Yoshida K, Nagai R (2004) Carbon monoxide protects against cardiac ischemia–reperfusion injury in vivo via MAPK and Akt–eNOS pathways. Arterioscler Thromb Vasc Biol. 24:1848–1853

    Article  PubMed  CAS  Google Scholar 

  81. Xi Q, Cheranov S, Jaggar J (2005) Mitochondria-derived reactive oxygen species dilate cerebral arteries by activating Ca2 + sparks. Circ Res 97:354–362

    Article  PubMed  CAS  Google Scholar 

  82. Williams SE, Wootton P, Mason H, Bould J, Iles D, Riccardi D, Peers C, Kemp P (2004) Hemoxygenase-2 is an oxygen sensor for a calcium-sensitive potassium channel. Science 306:2093–2097

    Article  PubMed  CAS  Google Scholar 

  83. Wang X, Yin C, Xi L, Kukreja R (2004) Opening of Ca2 + -activated K + channels triggers early and delayed preconditioning against I/R injury independent of NOS in mice. Am J Physiol Heart Circ Physiol 287:H2070–H2077

    Article  PubMed  CAS  Google Scholar 

  84. Machida K, Cheng KT, Lai C, Jeng K, Suung V, Lai M (2006) Hepatitis C virus triggers mitochondrial permeability transition with production of reactive oxygen species, leading to DNA damage and STAT3 activation. J Virol 80:7199–7207

    Article  PubMed  CAS  Google Scholar 

  85. Nakahira K, Kim HP, Geng X, Nakao A, Wang X, Murase N, Drain P, Wang X, Sasidar M, Nabel E, Takahashi T, Lukacs N, Ryter S, Morita K, Choi A (2006) Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts. J Exp Med 203:2377–2389

    Article  PubMed  CAS  Google Scholar 

  86. Otterbein LE, May A, Chin BY (2005) Carbon monoxide increases macrophage bacterial clearance through Toll-like receptor (TLR)4 expression. Cell Mol Biol (Noisy-le-grand) 51:433–440

    CAS  Google Scholar 

  87. Reinking J, Lam M, Pardee K (2005) The Drosophila nuclear receptor e75 contains heme and is gas responsive. Cell 122:195–207

    Article  PubMed  CAS  Google Scholar 

  88. Boehning D, Snyder SH (2002) Circadian rhythms. Carbon monoxide and clocks. Science 298:2339–2340

    Article  PubMed  CAS  Google Scholar 

  89. Drummond G, Cai H, Davis M, Ramasamy S, Harrison DG (2000) Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression by hydrogen peroxide. Circ Res 86:347–54

    PubMed  CAS  Google Scholar 

  90. Srisook K, Kim C, Cha YN (2005) Cytotoxic and cytoprotective actions of O2- and NO (ONOO) are determined both by cellular GSH level and HO activity in macrophages. Methods Enzymol 396:414–424

    Article  PubMed  CAS  Google Scholar 

  91. Motterlini R, Green CJ, Foresti R (2002) Regulation of heme oxygenase-1 by redox signals involving nitric oxide. Antioxid Redox Signal 4:615–624

    Article  PubMed  CAS  Google Scholar 

  92. Maines MD (2005) New insights into biliverdin reductase functions: linking heme metabolism to cell signaling. Physiology 20:382–389

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants 10239 from the Austrian National Bank (MB) and NIH HL-071797 and HL-076167 (LEO). Martin Bilban is an Erwin Schroedinger fellow supported by the Austrian Science Fund (FWF Project J2626). We thank the Julie Henry Fund at the BIDMC Transplant Center for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo E. Otterbein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilban, M., Haschemi, A., Wegiel, B. et al. Heme oxygenase and carbon monoxide initiate homeostatic signaling. J Mol Med 86, 267–279 (2008). https://doi.org/10.1007/s00109-007-0276-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0276-0

Keywords

Navigation