Skip to main content

Advertisement

Log in

Lignocellulosic waste fibers and their application as a component of urea-formaldehyde adhesive composition in the manufacture of plywood

  • Original
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

This research uses lignocellulosic waste fibers from the fiberboard industry, pulp and paper mills for their effective processing to reduce waste discharge, preserve the ecological environment, and produce innovative and sustainable solutions. The effects of using waste fibers obtained from fiberboard wet process, recycled paper process, and cellulose process as adhesive additives on some physical and mechanical properties and formaldehyde emission of adhesives and plywood panels were examined. Three major types of fibers, primary fibrous sludge (PFS), primary cellulose sludge (PCS), and deinked paper sludge (DPS) were characterized and evaluated as adhesive fillers in plywood manufacturing. UF adhesive filled with 15 wt% wheat flour (WF) was used as a reference sample. Plywood panels were made of formulations with urea-formaldehyde (UF) resin filled with three different concentrations of fibers, 1 wt%, 3 wt%, and 5 wt%. Compared with DPS and PCS, PFS had a higher lignin and extractives content, and lower pH. These characteristics make PFS a better adhesive filler for plywood than DPS or PCS. Panels with UF/PFS, UF/DPS and UF/PCS formulations at a sludge content of 1–5 wt%, 1 wt% and 3 wt%, respectively had higher wet shear strengths than those made with the control sample. It was also found that the use of fibers obtained from different processes in the UF adhesive composition decreased the formaldehyde emission of panels. The PFS, PCS, and DPS reduced formaldehyde emissions by up to 27.8, 24.9, and 19.4%, respectively compared with control panels, without compromising the shear strength. The shear strength of plywood panels with all investigated sludges met the requirements of the EN 314-2 standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdullah R, Ishak CF, Kadir WR, Bakar RA (2015) Characterization and feasibility assessment of recycled paper mill sludges for land application in relation to the environment. Int J Environ Res Public Health 12(8):9314–9329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ASTM D1200–10 (2018) Standard test method for viscosity by ford viscosity cup. ASTM International, West Conshohocken

    Google Scholar 

  • Basta AH, El-Saied H, Gobran RH (2004) Formaldehyde–free environmentally friendly composites based on agricultural waste. I. Novel adhesive system. Polym Plast Technol Eng 43(3):745–777

    Article  CAS  Google Scholar 

  • Basta AH, El-Saied H, Gobran RH, Sultan MZ (2006) Enhancing environmental performance of formaldehyde-based adhesives in lignocellulosic composites, part III: evaluation of some starch derivatives. Des Monomers Polym 9:325–347

    Article  CAS  Google Scholar 

  • Basta AH, El-Saied H, Winandy JE, Sabo R (2011) Preformed amide-containing biopolymer for improving the environmental performance of synthesized urea–formaldehyde in agro-fiber composites. J Polym Environ 19(2):405–412

    Article  CAS  Google Scholar 

  • Basta AH, El-Saied H, Baraka AM, Lotfy VF (2017a) Beneficial effect of new activated carbons in enhancing the performance of particle boards from UF-rice straw. Pigm Resin Technol 46(2):139–147

    Article  CAS  Google Scholar 

  • Basta AH, El-Saied H, Baraka AM, Lotfy VF (2017b) Performance of carbon xerogels in the production of environmentally friendly urea formaldehyde-bagasse composites. Clean Soil Air Water 45:6. https://doi.org/10.1002/clen.201600524

    Article  CAS  Google Scholar 

  • Beauchamp CJ, Charest MH, Gosselin A (2002) Examination of environmental quality of raw and composting de-inking paper sludge. Chemosphere 46:887–895

    Article  CAS  PubMed  Google Scholar 

  • Benar P, Mandelli D, Gonçalves ARC, Ferreria MMC, Schuchardt U (1999) Principal component analisis on the hydroxymethylation of sugarcane lignin: a time-depending study by FTIR. J Wood Chem Technol 19(1–2):151–165

    Article  CAS  Google Scholar 

  • Boran S, Usta M, Gümüşkaya E (2011) Decreasing formaldehyde emission from medium density fiberboard panels produced by adding different amine compounds to urea formaldehyde resin. Int J Adhes Adhes 31(7):674–678

    Article  CAS  Google Scholar 

  • Boran S, Usta M, Ondaral S, Gümüşkaya E (2012) The efficiency of tannin as a formaldehyde scavenger chemical in medium density fiberboard. Compos B 43(5):2487–2491

    Article  CAS  Google Scholar 

  • Costa NA, Pereira J, Ferra J, Cruz P, Martins J, Magalhгes FD, Mendes A, Carvalho LH (2013) Scavengers for achieving zero formaldehyde emission of wood-based panels. Wood Sci Technol 47:1261–1272

    Article  CAS  Google Scholar 

  • Davis E, Shaler SM, Goodell B (2003) The incorporation of paper deinking sludge into fiberboard. Forest Prod J 53:46–54

    CAS  Google Scholar 

  • De Jong JI, De Jonge J (1953) Kinetics of the hydroxymethylation of phenols in dilute aqueous solution. Recl Trav Chim Pays-Bas 72(6):497–509

    Article  Google Scholar 

  • Dijkstra R, De Jonge J, Lammers MF (1962) The kinetics of the reaction of phenol and formaldehyde. Recl Trav Chim Pays-Bas 81(4):285–296

    Article  CAS  Google Scholar 

  • Ding W, Li W, Gao Q, Han C, Zhang S, Li J (2013) The effects of sealing treatment and wood species on formaldehyde emission of plywood. BioResources 8:2568–2582

    Article  Google Scholar 

  • Dunky M (1998) Urea-formaldehyde (UF) adhesive resins for wood. Int J Adhes Adhes 18(2):95–107

    Article  CAS  Google Scholar 

  • Edalatmanesh M, Sain M, Liss SN (2010) Cellular biopolymers and molecular structure of a secondary pulp and paper mill sludge verified by spectroscopy and chemical extraction techniques. Water Sci Technol 62(12):2846–2853

    Article  CAS  PubMed  Google Scholar 

  • Elloumi A, Makhlouf M, Elleuchi A, Bradai Ch (2016a) Deinking sludge (DS), a new bio-filler for HDPE composites. Polym Plast Technol Eng 55:1012–1020

    Article  CAS  Google Scholar 

  • Elloumi A, Makhlouf M, Elleuchi A, Bradai Ch (2016b) The potential of deinking paper sludge for recycled HDPE reinforcement. Polym Compos. https://doi.org/10.1002/pc.23975

    Article  Google Scholar 

  • EN 314-1 (2004) Plywood. Bonding quality. Part 1: test methods. European Committee for Standardization, Brussels

    Google Scholar 

  • EN 314-2 (1993) Plywood. Bonding quality. Part 2: requirements. European Committee for Standardization, Brussels

    Google Scholar 

  • Eom Y-G, Kim J-S, Kim S, Kim J-A, Kim H-J (2006) Reduction of formaldehyde emission from particleboards by bio-scavengers. Mokchae Konghak 34:29–41

    Google Scholar 

  • European Commission (2008) Environmental, economic and social impacts of the use of sewage sludge on land. Final report. Part I: overview report. Milieu Ltd. (Belgium), Study Contract DG ENV.G.4/ETU/2008/0076r. http://ec.europa.eu/environment/archives/waste/sludge/pdf/part_i_report.pdf

  • Gangi M, Tabarsa T, Sepahvand S, Asghari J (2013) Reduction of formaldehyde emission from plywood. J Adhes Sci Technol 27(13):1407–1417

    Article  CAS  Google Scholar 

  • Gao Z, Wang X-M, Wan H, Liu Y (2008) Curing characteristics of urea-formaldehyde resin in the presence of various amounts of wood extracts and catalysts. J Appl Polym Sci 107:1555–1562

    Article  CAS  Google Scholar 

  • Gardner DJ, McGinnis GD (1988) Comparison of the reaction rates of the alkali-catalyzed addition of formaldehyde to phenol and selected lignins. J Wood Chem Technol 8(2):261–288

    Article  CAS  Google Scholar 

  • Geng X, Deng J, Zhang SY (2006) Effects of hot-pressing parameters and wax content on the properties of fiberboard made from paper mill sludge. Wood Fiber Sci 38:736–741

    CAS  Google Scholar 

  • Geng X, Deng J, Zhang SY (2007a) Paper mill sludge as a component of wood adhesive formulation. Holzforschung 61:688–692

    Article  CAS  Google Scholar 

  • Geng XL, Zhang SY, Deng J (2007b) Characteristics of paper mill sludge and its utilization for the manufacture of medium density fiberboard. Wood Fiber Sci 39:345–351

    CAS  Google Scholar 

  • Grigoriou A (1987) Formaldehyde emission from the edges and faces of various wood based materials. Holz Roh Werkst 45(2):63–67

    Article  CAS  Google Scholar 

  • Gui C, Zhu J, Zhang Z, Liu X (2016) Research progress on formaldehyde-free wood adhesive derived from soy flour. In: Rudawska A (ed) Adhesives—applications and properties. IntechOpen, London. https://doi.org/10.5772/65502

    Chapter  Google Scholar 

  • Hamzeh Y, Ashori A, Mirzaei B (2011) Effects of waste paper sludge on the physico-mechanical properties of high density polyethylene/wood flour composites. J Polym Environ 19:120–124

    Article  CAS  Google Scholar 

  • Hu J, Tian D, Renneckar S, Saddler JN (2018) Enzyme mediated nanofibrillation of cellulose by the synergistic actions of an endoglucanase, lytic polysaccharide monooxygenase (LPMO) and xylanase. Sci Rep 8(1):3195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IARC (2006) Monographs on the evaluation of carcinogenic risk to humans. Vol 88. Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol. European Committee for Standardization, World Health Organization—International Agency for Research on Cancer

    Google Scholar 

  • ISO 11402 (2004) Phenolic, amino and condensation resins—determination of free-formaldehyde content. International Organization for Standardization, Geneva

    Google Scholar 

  • JIS A 1460 (2001) Building boards determination of formaldehyde emission—desiccator method. Japanese Industrial Standards Committee, Tokyo

    Google Scholar 

  • Johns WE, Niazi KA (1980) Effect of pH and buffering capacity of wood on the gelation time of urea-formaldehyde resin. Wood Fiber 12(4):255–263

    CAS  Google Scholar 

  • Kamath YK, Hornby SB, Weigmann HD (1985) Irreversible chemisorption of formaldehyde on cotton cellulose. Textile Res J 55(11):663–666

    Article  CAS  Google Scholar 

  • Karim Z, Mathew AP, Kokol V, Wei J, Grahn M (2016) High-flux affinity membranes based on cellulose nanocomposites for removal of heavy metal ions from industrial effluents. RSC Adv 6(25):20644–20653

    Article  CAS  Google Scholar 

  • Kim S (2009a) Environment-friendly adhesives for surface bonding of wood-based flooring using natural tannin to reduce formaldehyde and TVOC emission. Bioresour Technol 100:744–748

    Article  CAS  PubMed  Google Scholar 

  • Kim S (2009b) The reduction of indoor air pollutant from wood-based composite by adding pozzolan for building materials. Constr Build Mater 23(6):2319–2323

    Article  Google Scholar 

  • Kim S, Kim HJ, Kim HS, Lee HH (2006) Effect of bio-scavengers on the curing behavior and bonding properties of melamine-formaldehyde resins. Macromol Mater Eng 291(9):1027–1034

    Article  CAS  Google Scholar 

  • Kmec S, Sedliacik J, Smidriakova M, Jablonski M (2010) Zeolite as a filler of UF resin for lower formaldehyde emission from plywood. Ann Warsaw Univ Life Sci 70:161–165

    CAS  Google Scholar 

  • Łebkowska M, Załęska-Radziwiłł M, Tabernacka A (2017) Adhesives based on formaldehyde—environmental problems. BioTechnologia 98(1):53–65

    Article  CAS  Google Scholar 

  • Lee S-H, Chang F, Inoue S, Endo T (2010) Increase in enzyme accessibility by generation of nanospace in cell wall supramolecular structure. Bioresour Technol 101(19):7218–7223

    Article  CAS  PubMed  Google Scholar 

  • Mahmood T, Elliott A (2006) A review of secondary sludge reduction technologies for the pulp and paper industry. Water Res 40:2093–2112

    Article  CAS  PubMed  Google Scholar 

  • Malutan T, Nicu R, Popa VI (2008) Contribution to the study of hydroxymethylation reaction of alkali lignin. BioResources 3(1):13–20

    CAS  Google Scholar 

  • Migneault S, Koubaa A, Riedl B, Nadji H, Deng J, Zhang SY (2011a) Binderless fiberboard made from primary and secondary pulp and paper sludge. Wood Fiber Sci 43:180–193

    CAS  Google Scholar 

  • Migneault S, Koubaa A, Riedl B, Nadji H, Deng J, Zhang T (2011b) Potential of pulp and paper sludge as a formaldehyde scavenger agent in MDF resins. Holzforschung 65:403–409

    Article  CAS  Google Scholar 

  • Monte MC, Fuente E, Blanco A, Negro C (2009) Waste management from pulp and paper production in the European Union. Waste Manag 29:293–308

    Article  CAS  PubMed  Google Scholar 

  • Moubarik A, Allal A, Pizzi A, Charreir B, Carreir F (2010) Characterization of a formaldehyde-free cornstarch-tannin wood adhesive for interior plywood. Eur J Wood Prod 68:427–433

    Article  CAS  Google Scholar 

  • Myers GE (1984) How mole ratio of UF resin affects formaldehyde emission and other properties: a literature critique. Forest Prod J 34:35–41

    CAS  Google Scholar 

  • Myers GE (1986) Effects of post-manufacture board treatments on formaldehyde emission: a literature review (1960–1984). Forest Prod J 36:41–51

    CAS  Google Scholar 

  • Nemli G (2003) Effects of coating materials process parameters on the technological properties of particleboard. PhD Dissertation thesis, Karadeniz Teknik University, Trabzon, Turkey

  • Park BD, Kang EC, Park JY (2008) Thermal curing behavior of modified urea-formaldehyde resin adhesives with two formaldehyde scavengers and their influence on adhesion performance. J Appl Polym Sci 110(3):1573–1580

    Article  CAS  Google Scholar 

  • Pervaiz M, Sain M (2011) Protein extraction from secondary sludge of paper mill wastewater and its utilization as a wood adhesive. BioResources 6:961–970

    CAS  Google Scholar 

  • Pizzi A, Mittal KL (2003) Handbook of adhesive technology, 2nd edn. Marcel Dekker, New York, p 672

    Google Scholar 

  • Poletto M, Zattera AJ, Santana R (2012) Structural differences between wood species: evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. J Appl Polym Sci 126:S1

    Article  CAS  Google Scholar 

  • Raquez J-M, Deléglise M, Lacrampe M-F, Krawczak P (2010) Thermosetting (bio)materials derived from renewable resources: a critical review. Prog Polym Sci 35(4):487–509

    Article  CAS  Google Scholar 

  • Reig FB, Adelantado JVG, Moreno MCMM (2002) FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples. Talanta 58(4):811–821

    Article  CAS  PubMed  Google Scholar 

  • Robertson JE, Robertson RRP (1977) Review of filler and extender quality evaluation. Forest Prod J 27:30–38

    Google Scholar 

  • Roffael E (1982) Die Formaldehydabgabe von Spanplatten und anderen Werkstoffen [The release of formaldehyde from particleboards and other materials]. DRW, Stuttgart

    Google Scholar 

  • Roffael E (2006) Volatile organic compounds and formaldehyde in nature, wood and wood based panels. Holz Roh Werkst 64:144–149

    Article  CAS  Google Scholar 

  • Roffael E (2016) Significance of wood extractives for wood bonding. Appl Microbiol Biotechnol 100:1589–1596

    Article  CAS  PubMed  Google Scholar 

  • Rowell RM (2005) Handbook of chemistry and wood composites. CRC Press, Boca Raton, p 446

    Google Scholar 

  • Sastry GP (1969) The reaction of formaldehyde with spruce lignins. Holzforschung 23(1):15–17

    Article  CAS  Google Scholar 

  • Seifert VK (1956) Über ein neues Verfahren zur Schnellbestimmung der Rein—Cellulose. Papier 10:301–306

    CAS  Google Scholar 

  • Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008a). Determination of extractives in biomass: Laboratory Analytical Procedure (LAP). NREL/TP-510-42619. National Renewable Energy Laboratory, Golden, CO

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008b) Determination of ash in biomass. Technical Report NREL/TP-510-42622. National Renewable Energy Laboratory Golden, CO

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2011) Determination of structural carbohydrates and lignin in biomass: Laboratory Analytical Procedure (LAP). NREL/TP-510-42618. National Renewable Energy Laboratory, Golden, CO

  • Son J, Yang HS, Kim HJ (2004) Physico-mechanical properties of paper sludge-thermoplastic polymer composites. J Thermoplast Compos Mater 17:509–522

    Article  CAS  Google Scholar 

  • Stefke B, Dunky M (2006) Catalytic influence of wood on the hardening behavior of formaldehyde based resin adhesives used for wood-based panels. J Adhes Sci Technol 20(8):761–785

    Article  CAS  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taramian A, Doosthoseini K, Mirshokraii SA, Faezipour M (2007) Particleboard manufacturing: an innovative way to recycle paper sludge. Waste Manag 27:1739–1746

    Article  CAS  PubMed  Google Scholar 

  • Vazquez G, Freire S, Rodriguez-Bona C, Gonzalez J, Antorrena G (1999) Structures, and reactivities with formaldehyde, of some acetosolv pine lignins. J Wood Chem Technol 19(4):357–378

    Article  CAS  Google Scholar 

  • Williams RS (2010) Finishing of wood. In: Wood handbook. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, General Technical Report FPL-GTR-190. Madison, Chapter 16, pp 16-1–16-39

  • Wise LE, Murphy M, D’addieco AA (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap Trade J 122(2):35–43

    CAS  Google Scholar 

  • Xing S, Riedl B, Koubaa A, Deng J (2012) Mechanical and physical properties of particleboard made from two pulp and paper mill secondary sludges. World J Eng 9:31–36

    Article  CAS  Google Scholar 

  • Xing S, Riedl B, Deng J, Nadji H, Koubaa A (2013) Potential of pulp and paper secondary sludge as co-adhesive and formaldehyde scavenger for particleboard manufacturing. Eur J Wood Prod 71:705–716

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge COST Action CA15216 “European Network of Bioadhesion Expertise: Fundamental Knowledge to Inspire Advanced Bonding Technologies” for support of ECOST-STSM-CA15216-010517-088783. Special thanks are extended to M.Sc. I. Salabay for determining the properties of the adhesives. This research was supported by the Slovak Research and Development Agency under the contract no. APVV-14-0506.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavlo Bekhta.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekhta, P., Sedliačik, J., Kačík, F. et al. Lignocellulosic waste fibers and their application as a component of urea-formaldehyde adhesive composition in the manufacture of plywood. Eur. J. Wood Prod. 77, 495–508 (2019). https://doi.org/10.1007/s00107-019-01409-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-019-01409-8

Navigation