Skip to main content

Advertisement

Log in

Stereotactic body radiotherapy for ventricular tachycardia (cardiac radiosurgery)

First-in-patient treatment in Germany

  • Case Study
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

Single-session cardiac stereotactic body radiotherapy, called cardiac radiosurgery (CRS) or radioablation (RA), may offer a potential treatment option for patients with refractory ventricular tachycardia (VT) and electrical storm who are otherwise ineligible for catheter ablation. However, there is only limited clinical experience. We now present the first-in-patient treatment using (CRS/RA) for VT in Germany.

Methods

A 78-year-old male patient with dilated cardiomyopathy and significantly reduced ejection fraction (15%) presented with monomorphic VT refractory to poly-anti-arrhythmic medication and causing multiple implantable cardioverter-defibrillator (ICD) interventions over the course of several weeks, necessitating prolonged treatment on an intensive care unit. Ultra-high-resolution electroanatomical voltage mapping (EVM) revealed a re-entry circuit in the cardiac septum inaccessible for catheter ablation. Based on the EVM, CRS/RA with a single session dose of 25 Gy (83% isodose) was delivered to the VT substrate (8.1 cc) using a c-arm-based high-precision linear accelerator on November 30, 2018.

Results

CRS/RA was performed without incident and dysfunction of the ICD was not observed. Following the procedure, a significant reduction in monomorphic VT from 5.0 to 1.6 episodes per week and of ICD shock interventions by 81.2% was observed. Besides periprocedural nausea with a single episode of vomiting, no treatment-associated side effects were noted. Unfortunately, the patient died 57 days after CRS/RA due to sepsis-associated cardiac circulatory failure after Clostridium difficile-associated colitis developed during rehabilitation. Histopathologic examination of the heart as part of a clinical autopsy revealed diffuse fibrosis on most sections of the heart without apparent differences between the target area and the posterior cardiac wall serving as a control.

Conclusion

CRS/RA appears to be a possible treatment option for otherwise untreatable patients suffering from refractory VT and electrical storm. A relevant reduction in VT incidence and ICD interventions was observed, although long-term outcome and consequences of CRS/RA remain unclear. Clinical trials are strongly warranted and have been initiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Shivkumar K (2019) Catheter ablation of ventricular arrhythmias. N Engl J Med 380:1555–1564

    Article  Google Scholar 

  2. Al-Khatib SM, Stevenson WG, Ackerman MJ et al (2018) 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: executive summary: a report of the American college of cardiology/American heart association task force on clinical practice guidelines and the heart rhythm society. Heart Rhythm 15(10):e190–e252

    Article  Google Scholar 

  3. Dukkipati SR, Koruth JS, Choudry S et al (2017) Catheter ablation of ventricular tachycardia in structural heart disease: indications, strategies, and outcomes-part II. J Am Coll Cardiol 70(23:2924–2941

    Article  Google Scholar 

  4. Sapp JL, Wells GA, Parkash R et al (2016) Ventricular tachycardia ablation versus escalation of antiarrhythmic drugs. N Engl J Med 375(2):111–121

    Article  CAS  Google Scholar 

  5. Tokuda M, Kojodjojo P, Tung S et al (2013) Acute failure of catheter ablation for ventricular tachycardia due to structural heart disease: causes and significance. J Am Heart Assoc 2(3):e72

    Article  Google Scholar 

  6. Santangeli P, Frankel DS, Tung R et al (2017) Early mortality after catheter ablation of ventricular tachycardia in patients with structural heart disease. J Am Coll Cardiol 69(17):2105–2115

    Article  Google Scholar 

  7. Gianni C, Mohanty S, Trivedi C et al (2017) Alternative approaches for ablation of resistant ventricular tachycardia. Card Electrophysiol Clin 9(1):93–98

    Article  Google Scholar 

  8. Sharma A, Wong D, Weidlich G et al (2010) Noninvasive stereotactic radiosurgery (CyberHeart) for creation of ablation lesions in the atrium. Heart Rhythm 7:802–810

    Article  Google Scholar 

  9. Maguire PJ, Gardner E, Jack AB et al (2011) Cardiac Radiosurgery (CyberHeart) for treatment of arrhythmia: physiologic and histopathologic correlation in the porcine model. Cureus 3(8):e32

    Google Scholar 

  10. Loo BW Jr, Soltys SG, Wang L et al (2015) Stereotactic ablative radiotherapy for the treatment of refractory cardiac ventricular arrhythmia. Circ Arrhythm Electrophysiol 8(3):748–750

    Article  Google Scholar 

  11. Cvek J, Neuwirth R, Knybel L et al (2014) Cardiac radiosurgery for malignant ventricular tachycardia. Cureus 6(7):e190

    Google Scholar 

  12. Cuculich PS, Schill MR, Kashani R et al (2017) Noninvasive cardiac radiation for ablation of ventricular tachycardia. N Engl J Med 377(24):2325–2336

    Article  Google Scholar 

  13. Robinson CG, Samson PP, Moore KMS et al (2018) Phase I/II trial of electrophysiology-guided noninvasive cardiac radioablation for ventricular tachycardia. Circulation 138:0–0

    Google Scholar 

  14. Knutson NC, Samson P, Hugo G et al (2019) Radiotherapy workflow and dosimetric analysis from a phase I/II trial of noninvasive cardiac radioablation for ventricular tachycardia. Int J Radiat Oncol Biol Phys 3016(19):30623–30626

    Google Scholar 

  15. Grimm J, LaCouture T, Croce R et al (2011) Dose tolerance limits and dose volume histogram evaluation for stereotactic body radiotherapy. J Appl Clin Med Phys 12(2):3368

    Article  Google Scholar 

  16. Gauter-Fleckenstein B, Israel CW, Dorenkamp M et al (2015) DEGRO/DGK guideline for radiotherapy in patients with cardiac implantable electronic devices. Strahlenther Onkol 191(5):393–404

    Article  Google Scholar 

  17. Jumeau R, Ozsahin M, Schwitter J et al (2018) Rescue procedure for an electrical storm using robotic non-invasive cardiac radio-ablation. Radiother Oncol 128(2):189–191

    Article  Google Scholar 

  18. Neuwirth R, Cvek J, Knybel L et al (2019) Stereotactic radiosurgery for ablation of ventricular tachycardia. Europace. 2019 Jul 1;21(7):1088–1095. https://doi.org/10.1093/europace/euz133

    Article  PubMed  Google Scholar 

  19. Scholz EP, Seidensaal K, Naumann P et al (2019) Risen from the dead: cardiac stereotactic ablative radiotherapy as last rescue in a patient with refractory ventricular fibrillation storm. HeartRhythm Case Rep. 2019 Mar 21;5(6):329–332. https://doi.org/10.1016/j.hrcr.2019.03.004

    Article  Google Scholar 

  20. Stegner F, Hautmann MG, Suess C et al (2019) Radiotherapy of patients with cardiac Implantable electronic device according to the DEGRO/DGK guideline—is the risk for errors overestimated? Strahlenther Onkol. https://doi.org/10.1007/s00066-019-01502-0

    Article  Google Scholar 

  21. Zei PC, Wong D, Gardner E et al (2018) Safety and efficacy of stereotactic radioablation targeting pulmonary vein tissues in an experimental model. Heart Rhythm 15(9):1420–1427

    Article  Google Scholar 

  22. Blanck O, Bode F, Gebhard M et al (2014) Dose escalation study for cardiac radiosurgery in a porcine model. Int J Radiat Oncol Biol Phys 89(3):590–598

    Article  Google Scholar 

  23. Bode F, Blanck O, Gebhard M et al (2015) Pulmonary vein isolation by radiosurgery: implications for non-invasive treatment of atrial fibrillation. Europace 17(12):1868–1874

    Article  Google Scholar 

  24. Blanck O, Ipsen S, Chan MK et al (2016) Treatment planning considerations for robotic guided cardiac radiosurgery for atrial fibrillation. Cureus 8(7):e705

    PubMed  PubMed Central  Google Scholar 

  25. Monroy E, Azpiri J, De La Pena C et al (2016) Late gadolinium enhancement cardiac magnetic resonance imaging post-robotic radiosurgical pulmonary vein isolation (RRPVI): first case in the world. Cureus 8(8):e738

    PubMed  PubMed Central  Google Scholar 

  26. Di Biase L, Burkhardt JD, Lakkireddy D et al (2015) Ablation of stable VTs versus substrate ablation in ischemic cardiomyopathy: the VISTA randomized multicenter trial. J Am Coll Cardiol 66(25):2872–2882

    Article  Google Scholar 

  27. Bhaskaran A, Nayyar S, Porta-Sánchez A et al (2019) Exit sites on the epicardium rarely subtend critical diastolic path of ischemic VT on the endocardium: Implications for noninvasive ablation. J Cardiovasc Electrophysiol 30(4):520–527

    Article  Google Scholar 

  28. Graham AJ, Orini M, Lambiase PD (2017) Limitations and challenges in mapping ventricular tachycardia: new technologies and future directions. Arrhythm Electrophysiol Rev 6(3):118–124

    Article  Google Scholar 

  29. Moustakis C, Blanck O, Ebrahimi F et al (2017) Planning benchmark study for SBRT of early stage NSCLC: results of the DEGRO working group stereotactic radiotherapy. Strahlenther Onkol 193(10:780–790

    Article  Google Scholar 

  30. Moustakis C, Chan MK, Kim J et al (2018) Treatment planning for spinal radiosurgery: a competitive multi-platform bench mark challenge. Strahlenther Onkol 194(9:843–854

    Article  Google Scholar 

  31. Boda-Heggemann J, Jahnke A, Chan M et al (2019) In-vivo treatment accuracy analysis of active motion-compensated liver SBRT through registration of plan dose to post-therapeutic MRI-morphologic alterations. Radiother Oncol 134:158–165

    Article  Google Scholar 

  32. Weidlich GA, Hacker F, Bellezza D et al (2018) Ventricular tachycardia: a treatment comparison study of the CyberKnife with conventional linear accelerators. Cureus 10(10):e3445

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Annette Rogge (Clinical Ethics Committee, Kiel, Germany) for ethical counseling in the context of the treatment of the patient.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Krug MD.

Ethics declarations

Conflict of interest

D. Krug received honoraria from Merck Sharp & Dohme (MSD) outside of the submitted work. H. Bonnemeier received honoraria from Boston Scientific (BSC) outside of the submitted work. O. Blanck, T. Demming, M. Dottermusch, K. Koch, M. Hirt, L. Kotzott, A. Zaman, L. Eidinger, F.-A. Siebert, and J. Dunst declare that they have no competing interests.

Ethical standards

Before informing the patient about the possibility of CRS/RA, the clinical ethics committee was consulted. During the discussion of CRS/RA with the patient, a representative of the clinical ethics committee was present. The patient gave his written informed consent for collection and analysis of clinical data for this case report.

Additional information

David Krug and Oliver Blanck contributed equally. Jürgen Dunst and Hendrik Bonnemeier are shared senior authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krug, D., Blanck, O., Demming, T. et al. Stereotactic body radiotherapy for ventricular tachycardia (cardiac radiosurgery). Strahlenther Onkol 196, 23–30 (2020). https://doi.org/10.1007/s00066-019-01530-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-019-01530-w

Keywords

Navigation