Skip to main content

Advertisement

Log in

Treatment planning for spinal radiosurgery

A competitive multiplatform benchmark challenge

Bestrahlungsplanung für Wirbelsäulen-Radiochirurgie

Eine kompetitive Multiplattform-Benchmark-Studie

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purpose

To investigate the quality of treatment plans of spinal radiosurgery derived from different planning and delivery systems. The comparisons include robotic delivery and intensity modulated arc therapy (IMAT) approaches. Multiple centers with equal systems were used to reduce a bias based on individual’s planning abilities. The study used a series of three complex spine lesions to maximize the difference in plan quality among the various approaches.

Methods

Internationally recognized experts in the field of treatment planning and spinal radiosurgery from 12 centers with various treatment planning systems participated. For a complex spinal lesion, the results were compared against a previously published benchmark plan derived for CyberKnife radiosurgery (CKRS) using circular cones only. For two additional cases, one with multiple small lesions infiltrating three vertebrae and a single vertebra lesion treated with integrated boost, the results were compared against a benchmark plan generated using a best practice guideline for CKRS. All plans were rated based on a previously established ranking system.

Results

All 12 centers could reach equality (n = 4) or outperform (n = 8) the benchmark plan. For the multiple lesions and the single vertebra lesion plan only 5 and 3 of the 12 centers, respectively, reached equality or outperformed the best practice benchmark plan. However, the absolute differences in target and critical structure dosimetry were small and strongly planner-dependent rather than system-dependent. Overall, gantry-based IMAT with simple planning techniques (two coplanar arcs) produced faster treatments and significantly outperformed static gantry intensity modulated radiation therapy (IMRT) and multileaf collimator (MLC) or non-MLC CKRS treatment plan quality regardless of the system (mean rank out of 4 was 1.2 vs. 3.1, p = 0.002).

Conclusions

High plan quality for complex spinal radiosurgery was achieved among all systems and all participating centers in this planning challenge. This study concludes that simple IMAT techniques can generate significantly better plan quality compared to previous established CKRS benchmarks.

Zusammenfassung

Zielsetzung

Untersuchung der Qualität von Behandlungsplänen für die Wirbelsäulen-Stereotaxie, die durch verschiedene Planungs- und Bestrahlungssysteme generiert wurden. Die Arbeit umfasst die robotergestützte Radiochirurgie sowie die intensitätsmodulierte Rotationstherapie (IMAT). Multiple Zentren mit gleichen Systemen wurden eingesetzt, um eine Verzerrung aufgrund individueller Planungsqualitäten zu reduzieren. Die Studie verwendete drei Fälle mit komplexen Wirbelsäulenläsionen, um den Unterschied in der Planqualität zwischen den verschiedenen Ansätzen zu untersuchen.

Methoden

International anerkannte Experten auf dem Gebiet der Behandlungsplanung und der Wirbelsäulen-Radiochirurgie aus 12 Zentren nahmen mit unterschiedlichen Planungssystemen teil. Für eine komplexe Wirbelsäulenläsion wurden die Ergebnisse mit einem zuvor publizierten Referenzplan verglichen, der für die CyberKnife-Radiochirurgie (CKRS) erstellt wurde und ausschließlich runde Kegelstrahlen verwendete. Für zwei weitere Fälle – einer mit mehreren kleinen Läsionen, die drei Wirbel infiltrierten, und einer mit einer einzelnen Wirbelkörperläsion, die mit integriertem Boost behandelt wurde – wurden die Ergebnisse mit einem Referenzplan verglichen, der unter Verwendung einer „Best-Practice“-Richtlinie entstanden ist. Alle Pläne wurden auf Basis eines zuvor etablierten Rankingsystems bewertet.

Ergebnisse

Alle 12 Zentren erreichen entweder die gleiche Planqualität (n = 4) oder übertrafen den Referenzplan (n = 8). Für die multiplen Läsionen und den Einzelwirbel-Läsionsplan erreichten jeweils nur 5 bzw. 3 der 12 Zentren eine gleiche oder bessere Planqualität als der „Best-Practice“-Referenzplan. Die absoluten Unterschiede in der Dosisverteilung im Zielvolumen und in den kritischen Strukturen waren jedoch klein und stark vom individuellen Planer und nicht vom System abhängig. Insgesamt führte die Gantry-basierte IMAT mit einfachen Planungstechniken (zwei koplanare Arcs) zu schnelleren Behandlungen und deutlich besseren Ergebnissen in der Planqualität als die statische Gantry-basierte Intensitätsmodulierte Strahlentherapie (IMRT) oder die Multilamellenkollimator (MLC)- und nicht-MLC-basierte CKRS unabhängig vom System (mittlerer Rank 1,2 vs. 3,1 von 4; p = 0,002).

Schlussfolgerung

Bei dieser Planungsherausforderung für komplexe Wirbelsäulenradiochirurgie wurde eine hohe Planqualität unter allen Systemen und allen beteiligten Zentren erreicht. Die Studie schlussfolgert, dass einfache IMAT-Techniken deutlich bessere Planqualitäten im Vergleich zu früheren etablierten CKRS-Benchmarks generieren können.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Husain ZA, Sahgal A, De Salles A et al (2017) Stereotactic body radiotherapy for de novo spinal metastases: systematic review. J Neurosurg Spine 27:295–302

    Article  PubMed  Google Scholar 

  2. Redmond KJ, Lo SS, Soltys SG et al (2017) Consensus guidelines for postoperative stereotactic body radiation therapy for spinal metastases: results of an international survey. J Neurosurg Spine 26(3):299–306

    Article  PubMed  Google Scholar 

  3. Myrehaug S, Sahgal A, Hayashi M et al (2017) Reirradiation spine stereotactic body radiation therapy for spinal metastases: systematic review. J Neurosurg Spine 27(4):428–435

    Article  PubMed  Google Scholar 

  4. Cox BW, Spratt DE, Lovelock M et al (2012) International Spine Radiosurgery Consortium consensus guidelines for target volume definition in spinal stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 83(5):e597–e605

    Article  PubMed  Google Scholar 

  5. Thibault I, Chang EL, Sheehan J et al (2015) Response assessment after stereotactic body radiotherapy for spinal metastasis: a report from the SPIne response assessment in Neuro-Oncology (SPINO) group. Lancet Oncol 16(16):e595–e603

    Article  PubMed  Google Scholar 

  6. Grimm J, LaCouture T, Croce R et al (2011) Dose tolerance limits and dose volume histogram evaluation for stereotactic body radiotherapy. J Appl Clin Med Phys 12(2):3368

    Article  PubMed  Google Scholar 

  7. Patel VB, Wegner RE, Heron DE et al (2012) Comparison of whole versus partial vertebral body stereotactic body radiation therapy for spinal metastases. Technol Cancer Res Treat 11(2):105–115

    Article  PubMed  Google Scholar 

  8. Huo M, Sahgal A, Pryor D et al (2017) Stereotactic spine radiosurgery: review of safety and efficacy with respect to dose and fractionation. Surg Neurol Int 8:30. https://doi.org/10.4103/2152-7806.200581

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gallo JJ, Kaufman I, Powell R et al (2015) Single-fraction spine SBRT end-to-end testing on TomoTherapy, Vero, TrueBeam, and CyberKnife treatment platforms using a novel anthropomorphic phantom. J Appl Clin Med Phys 16(1):5120

    Article  PubMed  Google Scholar 

  10. Fürweger C, Drexler C, Kufeld M et al (2010) Patient motion and targeting accuracy in robotic spinal radiosurgery: 260 single-fraction fiducial-free cases. Int J Radiat Oncol Biol Phys 78(3):937–945

    Article  PubMed  Google Scholar 

  11. Hazelaar C, Dahele M, Mostafavi H et al (2016) Subsecond and submillimeter resolution positional verification for stereotactic irradiation of spinal lesions. Int J Radiat Oncol Biol Phys 94(5):1154–1162

    Article  PubMed  Google Scholar 

  12. Han Z, Bondeson JC, Lewis JH et al (2016) Evaluation of initial setup accuracy and intrafraction motion for spine stereotactic body radiation therapy using stereotactic body frames. Pract Radiat Oncol 6(1):e17–e24

    Article  PubMed  Google Scholar 

  13. Hazelaar C, Dahele M, Scheib S et al (2017) Verifying tumor position during stereotactic body radiation therapy delivery using (limited-arc) cone beam computed tomography imaging. Radiother Oncol 123(3):355–362

    Article  PubMed  Google Scholar 

  14. Schlaefer A, Schweikard A (2008) Stepwise multi-criteria optimization for robotic radiosurgery. Med Phys 35(5):2094–2103

    Article  PubMed  CAS  Google Scholar 

  15. Craft D, McQuaid D, Wala J et al (2012) Multicriteria VMAT optimization. Med Phys 39(2):686–696

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yang J, Ma L, Wang XS et al (2016) Dosimetric evaluation of 4 different treatment modalities for curative-intent stereotactic body radiation therapy for isolated thoracic spinal metastases. Med Dosim 41(2):105–112

    Article  PubMed  Google Scholar 

  17. Kim J, Jang HS, Kim YS et al (2017) Comparison of spinal Stereotactic Body Radiotherapy (SBRT) planning techniques: intensity-modulated radiation therapy, modulated arc therapy, and helical tomotherapy. Med Dosim 42(3):210–215

    Article  PubMed  Google Scholar 

  18. Nalichowski A, Kaufman I, Gallo J et al (2017) Single fraction radiosurgery/stereotactic body radiation therapy (SBRT) for spine metastasis: a dosimetric comparison of multiple delivery platforms. J Appl Clin Med Phys 18(1):164–169

    PubMed  Google Scholar 

  19. Moustakis C, Blanck O, Ebrahimi Tazehmahalleh F et al (2017) Planning benchmark study for SBRT of early stage NSCLC: results of the DEGRO Working Group Stereotactic Radiotherapy. Strahlenther Onkol 193(10):780–790

    Article  PubMed  Google Scholar 

  20. Blanck O, Wang L, Baus W et al (2016) Inverse treatment planning for spinal robotic radiosurgery: an international multi-institutional benchmark trial. J Appl Clin Med Phys 17(3):313–330

    Article  PubMed  PubMed Central  Google Scholar 

  21. Echner GG, Kilby W, Lee M et al (2009) The design, physical properties and clinical utility of an iris collimator for robotic radiosurgery. Phys Med Biol 54(18):5359–5380

    Article  PubMed  CAS  Google Scholar 

  22. Otto K (2008) Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 35(1):310–317

    Article  PubMed  Google Scholar 

  23. Kim J, Wen N, Jin JY et al (2012) Clinical commissioning and use of the Novalis Tx linear accelerator for SRS and SBRT. J Appl Clin Med Phys 13(3):3729

    Article  PubMed  Google Scholar 

  24. Gete E, Duzenli C, Milette MP et al (2013) A Monte Carlo approach to validation of FFF VMAT treatment plans for the TrueBeam linac. Med Phys 40(2):21707

    Article  PubMed  Google Scholar 

  25. Masi L, Doro R, Favuzza V et al (2013) Impact of plan parameters on the dosimetric accuracy of volumetric modulated arc therapy. Med Phys 40(7):71718

    Article  PubMed  Google Scholar 

  26. Ramm U, Köhn J, Rodriguez Dominguez R et al (2014) Feasibility study of patient positioning verification in electron beam radiotherapy with an electronic portal imaging device (EPID). Phys Med 30(2):215–220

    Article  PubMed  CAS  Google Scholar 

  27. Cilla S, Deodato F, Macchia G et al (2016) Linac-based extracranial radiosurgery with Elekta volumetric modulated arc therapy and an anatomy-based treatment planning system: feasibility and initial experience. Med Dosim 41(2):166–172

    Article  PubMed  Google Scholar 

  28. Fürweger C, Prins P, Coskan H et al (2016) Characteristics and performance of the first commercial multileaf collimator for a robotic radiosurgery system. Med Phys 43(5):2063

    Article  PubMed  Google Scholar 

  29. Seuntjens J, Lartigau EF, Cora S et al (2014) ICRU report 91. J ICRU. https://doi.org/10.1093/jicru/ndx017

    Article  Google Scholar 

  30. De Ornelas-Couto M, Bossart E, Ly B et al (2016) Radiation therapy for stereotactic body radiation therapy in spine tumors: linac or robotic? Biomed Phys Eng Express 2:15012

    Article  Google Scholar 

  31. Fürweger C, Drexler C, Muacevic A et al (2014) CyberKnife robotic spinal radiosurgery in prone position: dosimetric advantage due to posterior radiation access? J Appl Clin Med Phys 15(4):11–21

    Article  PubMed Central  Google Scholar 

  32. McGuinness CM, Gottschalk A, Lessard E et al (2015) Investigating the clinical advantages of a robotic linac equipped with a multileaf collimator in the treatment of brain and prostate cancer patients. J Appl Clin Med Phys 16(5):284–295

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jang SY, Lalonde R, Ozhasoglu C, Burton S, Heron D, Huq MS (2016) Dosimetric comparison between cone/Iris-based and InCise MLC-based CyberKnife plans for single and multiple brain metastases. J Appl Clin Med Phys 17(5):1–16

    Article  Google Scholar 

  34. Kearney V, Cheung JP, McGuinness C et al (2017) CyberArc: a non-coplanar-arc optimization algorithm for CyberKnife. Phys Med Biol 62(14):5777–5789

    Article  PubMed  Google Scholar 

  35. Foy JJ, Marsh R, Ten Haken RK et al (2017) An analysis of knowledge-based planning for stereotactic body radiation therapy of the spine. Pract Radiat Oncol 7(5):e355–e360

    Article  PubMed  Google Scholar 

  36. Okoye CC, Patel RB, Hasan S et al (2016) Comparison of ray tracing and Monte Carlo calculation algorithms for thoracic spine lesions treated with Cyberknife-based stereotactic body radiation therapy. Technol Cancer Res Treat 15(1):196–202

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Moustakis PhD.

Ethics declarations

Conflict of interest

C. Moustakis, M.K.H. Chan, J. Kim, J. Nilsson, A. Bergman, T.J. Bichay, I. PalazonCano, S. Cilla, F. Deodato, R. Doro, J. Dunst, H.T. Eich, P. Fau, M. Fong, U. Haverkamp, S. Heinze, G. Hildebrandt, D. Imhoff, E. de Klerck, J. Köhn, U. Lambrecht, B. Loutfi-Krauss, F. Ebrahimi, L. Masi, A.H. Mayville, A. Mestrovic, M. Milder, A.G. Morganti, D. Rades, U. Ramm, C. Rödel, F.-A. Siebert, W. den Toom, L. Wang, S. Wurster, A. Schweikard, S.G. Soltys, S. Ryu and O. Blanck declare that they have no competing interests.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Caption Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moustakis, C., Chan, M.K.H., Kim, J. et al. Treatment planning for spinal radiosurgery. Strahlenther Onkol 194, 843–854 (2018). https://doi.org/10.1007/s00066-018-1314-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-018-1314-2

Keywords

Schlüsselwörter

Navigation