Skip to main content

Advertisement

Log in

Visual Assessment of Magnetic Resonance Imaging Perfusion Lesions in a Large Patient Group

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Few magnetic resonance imaging (MRI) studies of stroke have evaluated the value of visual assessment of perfusion/diffusion mismatch, which is crucial for routine application. In this study an attempt was made to visually assess perfusion lesions resembling the acute clinical situation and identify parameters with the highest interobserver reliability when used to define a perfusion/diffusion mismatch and the highest accuracy for prediction of infarct growth.

Methods

Magnetic resonance imaging was performed within 6 h of symptom onset and again 1–11 days thereafter in 86 consecutive stroke patients who received intravenous thrombolytic therapy. The MRI protocol included diffusion-weighted imaging apparent diffusion coefficient (DWI/ADC), fluid-attenuated inversion recovery (FLAIR) and perfusion imaging (PI). Maps for different perfusion parameters, e.g. cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT) and time to peak (TTP) were calculated. Areas of perfusion deficits of all perfusion parameters were visually compared to corresponding ADCs and final infarct size by two independent observers.

Results

The final infarct size was overestimated by TTP (in 81/83 patients by raters 1 and 2, respectively), MTT (82/83) and CBF (65/74) lesions. The ADC lesions were rated smaller than the final infarct size in 43/38 cases by raters 1 and 2 and the CBV decrease was rated to underestimate final infarct size in 40/31 cases.

The only significantly increased OR of 3.883 (95 % CI 1.466–10.819, p = 0.004, rater 1)/5.142 (95 % CI 1.828–15.142, p = 0.001, rater 2) for predicting infarct growth was observed for the presence of a CBV > ADC mismatch, which also showed the highest kappa value of 0.407.

Conclusions

All mismatch patterns were prone to high interrater variability when assessed under conditions resembling the clinical setting. Of all tested mismatch patterns the CBV > ADC mismatch was the strongest predictor of lesion growth while visual assessment of TTP and CBF generally resulted in an overestimation of infarct sizes and the presence of a TTP > ADC or CBF > ADC mismatch was not significantly predictive for lesion growth. Visual inspection of these most commonly used mismatch patterns has a low value for the prediction of infarct growth and thus the estimation of the penumbra in ischemic stroke patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wahlgren N, Ahmed N, Davalos A, Hacke W, Millan M, Muir K, et al. Thrombolysis with alteplase 3–4.5 h after acute ischaemic stroke (SITS-ISTR): an observational study. Lancet. 2008;372(9646):1303–9. doi:S0140-6736(08)61339-2 [pii]. 10.1016/S0140-6736(08)61339-2.

    Article  PubMed  CAS  Google Scholar 

  2. Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, et al. Thrombolysis with alteplase 3–4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359(13):1317–29. doi:359/13/1317 [pii]. 10.1056/NEJMoa0804656.

    Article  PubMed  CAS  Google Scholar 

  3. Muir K, Buchan A, Vonkummer R, Rother J, Baron J. Imaging of acute stroke. Lancet Neurol. 2006;5(9):755–68. doi:10.1016/S1474-4422(06)70545-2.

    Article  PubMed  Google Scholar 

  4. Rother J, Schellinger PD, Gass A, Siebler M, Villringer A, Fiebach JB, et al. Effect of intravenous thrombolysis on MRI parameters and functional outcome in acute stroke < 6 hours. Stroke. 2002;33(10):2438–45.

    Article  PubMed  CAS  Google Scholar 

  5. Thomalla G, Schwark C, Sobesky J, Bluhmki E, Fiebach JB, Fiehler J, et al. Outcome and symptomatic bleeding complications of intravenous thrombolysis within 6 hours in MRI-selected stroke patients: comparison of a German multicenter study with the pooled data of ATLANTIS, ECASS, and NINDS tPA trials. Stroke. 2006;37(3):852–8. doi:10.1161/01.STR.0000204120.79399.72.

    Article  PubMed  Google Scholar 

  6. Fiehler J, Knudsen K, Kucinski T, Kidwell CS, Alger J, Thomalla G, et al. Predictors of apparent diffusion coefficient normalization in stroke patients. Stroke. 2004;35(2):514–9. doi:10.1161/01.STR.0000114873.28023.C2.

    Article  PubMed  Google Scholar 

  7. Grandin CB, Duprez TP, Smith AM, Oppenheim C, Peeters A, Robert AR, et al. Which MR-derived perfusion parameters are the best predictors of infarct growth in hyperacute stroke? Comparative study between relative and quantitative measurements. Radiology. 2002;223(2):361–70.

    Article  PubMed  Google Scholar 

  8. Kucinski T, Naumann D, Knab R, Schoder V, Wegener S, Fiehler J, et al. Tissue at risk is overestimated in perfusion-weighted imaging: MR imaging in acute stroke patients without vessel recanalization. AJNR Am J Neuroradiol. 2005;26(4):815–9.

    PubMed  Google Scholar 

  9. Kane I, Sandercock P, Wardlaw J. Magnetic resonance perfusion diffusion mismatch and thrombolysis in acute ischaemic stroke: a systematic review of the evidence to date. J Neurol Neurosurg Psychiatry. 2007;78(5):485–91. doi:jnnp.2006.100347 [pii]. 10.1136/jnnp.2006.100347.

    Article  PubMed  CAS  Google Scholar 

  10. Ribo M, Molina CA, Rovira A, Quintana M, Delgado P, Montaner J, et al. Safety and efficacy of intravenous tissue plasminogen activator stroke treatment in the 3- to 6-hour window using multimodal transcranial Doppler/MRI selection protocol. Stroke. 2005;36(3):602–6. doi:01.STR.0000155737.43566.ad [pii]. 10.1161/01.STR.0000155737.43566.ad.

    Article  PubMed  CAS  Google Scholar 

  11. Hacke W, Albers G, Al-Rawi Y, Bogousslavsky J, Davalos A, Eliasziw M, et al. The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke. 2005;36(1):66–73. doi:01.STR.0000149938.08731.2c [pii]. 10.1161/01.STR.0000149938.08731.2c.

    Article  PubMed  CAS  Google Scholar 

  12. Schellinger PD, Fiebach JB, Hacke W. Imaging-based decision making in thrombolytic therapy for ischemic stroke: present status. Stroke. 2003;34(2):575–83.

    Article  PubMed  Google Scholar 

  13. Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med. 1996;36(5):715–25.

    Article  PubMed  CAS  Google Scholar 

  14. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.

    Article  PubMed  CAS  Google Scholar 

  15. Nighoghossian N, Hermier M, Adeleine P, Derex L, Dugor JF, Philippeau F, et al. Baseline magnetic resonance imaging parameters and stroke outcome in patients treated by intravenous tissue plasminogen activator. Stroke. 2003;34(2):458–63.

    Article  PubMed  CAS  Google Scholar 

  16. Butcher KS, Parsons M, MacGregor L, Barber PA, Chalk J, Bladin C, et al. Refining the perfusion-diffusion mismatch hypothesis. Stroke. 2005;36(6):1153–9. doi:36/6/1153 [pii].

    Article  PubMed  CAS  Google Scholar 

  17. Albers GW, Thijs V, Wechsler L, Kemp S, Schlaug G, Skalabrin E, et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol. 2006;60(5):508–17. doi:10.1002/(ISSN)1531-8249.

    Article  PubMed  Google Scholar 

  18. Parsons M, Barber P, Chalk J, Darby D, Rose S, Desmond P, et al. Diffusion- and perfusion-weighted MRI response to thrombolysis in stroke. Ann Neurol. 2002;51(1):28–37. doi:10.1002/(ISSN)1531-8249.

    Article  PubMed  Google Scholar 

  19. Neumann-Haefelin T, Wittsack HJ, Wenserski F, Siebler M, Seitz RJ, Mödder U, et al. Diffusion- and perfusion-weighted MRI. The DWI/PWI mismatch region in acute stroke. Stroke. 1999;30(8):1591–7.

    Article  PubMed  CAS  Google Scholar 

  20. Fiehler J, von Bezold M, Kucinski T, Knab R, Eckert B, Wittkugel O, et al. Cerebral blood flow predicts lesion growth in acute stroke patients. Stroke. 2002;33(10):2421–5.

    Article  PubMed  Google Scholar 

  21. Hjort N, Butcher K, Davis SM, Kidwell CS, Koroshetz WJ, Rother J, et al. Magnetic resonance imaging criteria for thrombolysis in acute cerebral infarct. Stroke. 2005;36(2):388–97. doi:01.STR.0000152268.47919.be [pii]. 10.1161/01.STR.0000152268.47919.be.

    Article  PubMed  CAS  Google Scholar 

  22. Schellinger PD, Jansen O, Fiebach JB, Pohlers O, Ryssel H, Heiland S, et al. Feasibility and practicality of MR imaging of stroke in the management of hyperacute cerebral ischemia. Am J Neuroradiol. 2000;21(7):1184–9.

    PubMed  CAS  Google Scholar 

  23. Coutts SB, Simon JE, Tomanek AI, Barber PA, Chan J, Hudon ME, et al. Reliability of assessing percentage of diffusion-perfusion mismatch. Stroke. 2003;34(7):1681–3. doi:10.1161/01.STR.0000078840.96473.20. 01.STR.0000078840.96473.20 [pii].

    Article  PubMed  Google Scholar 

  24. Luby M, Ku KD, Latour LL, Merino JG, Hsia AW, Lynch JK, et al. Visual perfusion-diffusion mismatch is equivalent to quantitative mismatch. Stroke. 2011;42(4):1010–4. doi:STROKEAHA.110.603290 [pii]. 10.1161/STROKEAHA.110.603290.

    Article  PubMed  Google Scholar 

  25. Kluytmans M, van Everdingen KJ, Kappelle LJ, Ramos LM, Viergever MA, Van Der Grond J. Prognostic value of perfusion- and diffusion-weighted MR imaging in first 3 days of stroke. Eur Radiol. 2000;10(9):1434–41.

    Article  PubMed  CAS  Google Scholar 

  26. Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with NMR contrast agents. Magn Reson Med. 1990;14(2):249–65.

    Article  PubMed  CAS  Google Scholar 

  27. Barber PA, Darby DG, Desmond PM, Yang Q, Gerraty RP, Jolley D, et al. Prediction of stroke outcome with echoplanar perfusion- and diffusion-weighted MRI. Neurology. 1998;51(2):418–26.

    Article  PubMed  CAS  Google Scholar 

  28. Schellinger PD, Kaste M, Hacke W. An update on thrombolytic therapy for acute stroke. Curr Opin Neurol. 2004;17(1):69–77. doi:00019052-200402000-00012 [pii].

    Article  PubMed  CAS  Google Scholar 

  29. Sorensen AG, Copen WA, Ostergaard L, Buonanno FS, Gonzalez RG, Rordorf G, et al. Hyperacute stroke: simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean tissue transit time. Radiology. 1999;210(2):519–27.

    PubMed  CAS  Google Scholar 

  30. Kidwell CS, Alger JR, Saver JL. Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke. 2003;34(11):2729–35. doi:10.1161/01.STR.0000097608.38779.CC. 01.STR.0000097608.38779.CC [pii].

    Article  PubMed  Google Scholar 

  31. Fiehler J, Kucinski T, Knudsen K, Rosenkranz M, Thomalla G, Weiller C, et al. Are there time-dependent differences in diffusion and perfusion within the first 6 hours after stroke onset? Stroke. 2004;35(9):2099–104. doi:10.1161/01.STR.0000138450.15078.b5.

  32. Baird AE, Benfield A, Schlaug G, Siewert B, Lovblad KO, Edelman RR, et al. Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging. Ann Neurol. 1997;41(5):581–9. doi:10.1002/ana.410410506.

    Article  PubMed  CAS  Google Scholar 

  33. Darby DG, Barber PA, Gerraty RP, Desmond PM, Yang Q, Parsons M, et al. Pathophysiological topography of acute ischemia by combined diffusion-weighted and perfusion MRI. Stroke. 1999;30(10):2043–52.

    Google Scholar 

  34. Parsons MW, Yang Q, Barber PA, Darby DG, Desmond PM, Gerraty RP, et al. Perfusion magnetic resonance imaging maps in hyperacute stroke: relative cerebral blood flow most accurately identifies tissue destined to infarct. Stroke. 2001;32(7):1581–7.

    Article  PubMed  CAS  Google Scholar 

  35. Sorensen AG, Buonanno FS, Gonzalez RG, Schwamm LH, Lev MH, Huang-Hellinger FR, et al. Hyperacute stroke: evaluation with combined multisection diffusion-weighted and hemodynamically weighted echo-planar MR imaging. Radiology. 1996;199(2):391–401.

    PubMed  CAS  Google Scholar 

  36. Rordorf G, Koroshetz WJ, Copen WA, Cramer SC, Schaefer PW, Budzik RF, et al. Regional ischemia and ischemic injury in patients with acute middle cerebral artery stroke as defined by early diffusion-weighted and perfusion-weighted MRI. Stroke. 1998;29(5):939–43.

    Article  PubMed  CAS  Google Scholar 

  37. Butcher KS, Parsons MW, Davis S, Donnan G. PWI/DWI mismatch: better definition required. Stroke. 2003;34(11):e215–6; author reply e-6. doi:10.1161/01.STR.0000099066.23627.24. 01.STR.0000099066.23627.24 [pii].

    Article  PubMed  Google Scholar 

  38. Kucinski T, Majumder A, Knab R, Naumann D, Fiehler J, Väterlein O, et al. Cerebral perfusion impairment correlates with the decrease of CT density in acute ischaemic stroke. Neuroradiology. 2004;46(9):716–22. doi:10.1007/s00234-004-1226-y.

    Article  PubMed  Google Scholar 

  39. Shih LC, Saver JL, Alger JR, Starkman S, Leary MC, Vinuela F, et al. Perfusion-weighted magnetic resonance imaging thresholds identifying core, irreversibly infarcted tissue. Stroke. 2003;34(6):1425–30. doi:10.1161/01.STR.0000072998.70087.E9. 01.STR.0000072998.70087.E9 [pii].

    Article  PubMed  Google Scholar 

  40. Kane I, Hand PJ, Rivers C, Armitage P, Bastin ME, Lindley R, et al. A practical assessment of magnetic resonance diffusion-perfusion mismatch in acute stroke: observer variation and outcome. J Neurol. 2009;256(11):1832–8. doi:.1007/s00415–009-5202–7.

    Article  PubMed  CAS  Google Scholar 

  41. Tourdias T, Renou P, Sibon I, Asselineau J, Bracoud L, Dumoulin M, et al. Final cerebral infarct volume is predictable by MR imaging at 1 week. AJNR Am J Neuroradiol. 2011;32(2):352–8. doi:ajnr.A2271 [pii]. 10.3174/ajnr.A2271.

    Article  PubMed  CAS  Google Scholar 

  42. Wu O, Christensen S, Hjort N, Dijkhuizen RM, Kucinski T, Fiehler J, et al. Characterizing physiological heterogeneity of infarction risk in acute human ischaemic stroke using MRI. Brain. 2006;129(Pt 9):2384–93. doi:10.1093/brain/awl183.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare that there is no actual or potential conflict of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Siemonsen MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siemonsen, S., Fitting, T., Thomalla, G. et al. Visual Assessment of Magnetic Resonance Imaging Perfusion Lesions in a Large Patient Group. Clin Neuroradiol 22, 305–313 (2012). https://doi.org/10.1007/s00062-012-0143-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-012-0143-4

Keywords

Navigation