Skip to main content
Log in

Dynamic thiol/disulphide homeostasis in patients with hypertrophic cardiomyopathy

Dynamische Thiol/Disulfid-Homöostase bei Patienten mit hypertropher Kardiomyopathie

  • Original articles
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Background

In addition to the genetic complexity of hypertrophic cardiomyopathy (HCM), there must be other disease-modifying factors that contribute to its highly variable clinical and phenotypic expression. The authors aimed to investigate serum thiol/disulphide homeostasis as a proxy for oxidative stress using a novel automated assay in patients with HCM.

Methods

This cross-sectional study was conducted on 119 patients with HCM and 52 without HCM. The methods used to measure dynamic thiol/disulphide homeostasis as calorimetric and duplex quantities were developed in 2014.

Results

Median serum native thiol levels were significantly lower in patients with HCM than in those without (312.5 μmol/L [285–370 μmol/L] vs 421 μmol/L [349–469.5 μmol/L]; p < 0.001). Serum total thiol levels and disulphide levels were considerably lower than those in the control group ([844.68 ± 195.99 μmol/L vs 1158.92 ± 243.97 μmol/L; p < 0.001], [259.13 ± 65.66 μmol/L vs 375.02 ± 79.99 μmol/L; p < 0.001], respectively). Serum disulphide/native thiol ratios and disulphide/total thiol ratios were significantly lower in HCM patients than in controls (0.80 ± 0.09 vs 0.92 ± 0.05; p < 0.001 and 0.31 [0.30–0.32] vs 0.32 [0.32–0.33]; p < 0.001). Finally, reduced thiol ratios were higher and oxidized thiol ratios were significantly lower in patients with HCM than in controls.

Conclusions

Despite the fact that antioxidant capacity was impaired, the extracellular environment remained in a reducing state by keeping serum disulphide/native thiol ratios low. Therefore, the authors speculate that HCM may behave similarly to tumours with respect to serum thiol-disulphide levels.

Zusammenfassung

Hintergrund

Neben der genetischen Komplexität der hypertrophen Kardiomyopathie (HCM) muss es weitere krankheitsmodifizierende Faktoren geben, die zur hoch variablen klinischen und phänotypischen Ausprägung der Erkrankung beitragen. Ziel der vorliegenden Arbeit war es, die Thiol/Disulfid-Homöostase im Serum als einen Surrogatparameter für oxidativen Stress bei Patienten mit HCM zu untersuchen; dabei kam ein neuartiger automatisierter Assay zum Einsatz.

Methoden

In diese Querschnittstudie wurden 119 Patienten mit und 52 Patienten ohne HCM eingeschlossen. Die Verfahren zur Messung der dynamischen Thiol/Disulfid-Homöostase als kalorimetrische und Duplex-Mengen wurden 2014 entwickelt.

Ergebnisse

Die medianen Serumkonzentrationen von nativem Thiol waren bei Patienten mit HCM signifikant niedriger als bei Patienten ohne die Erkrankung: 312,5 μmol/l (285–370 μmol/l) vs. 421 μmol/l (349–469,5 μmol/l); p < 0,001. Die Gesamtthiol- und Disulfidkonzentrationen im Serum waren erheblich niedriger als in der Kontrollgruppe: 844,68 ± 195,99 μmol/l vs. 1158,92 ± 243,97 μmol/l; p < 0,001; 259,13 ± 65,66 μmol/l vs. 375,02 ± 79,99 μmol/l; p < 0,001. Das Verhältnis von Disulfiden zu nativem Thiol und von Disulfiden zu Gesamtthiol war bei Patienten mit HCM signifikant niedriger als in der Kontrollgruppe: 0,80 ± 0,09 vs. 0,92 ± 0,05; p < 0,001; 0,31 (0,30–0,32) vs. 0,32 (0,32–0,33); p < 0,001. Zudem war das Verhältnis reduzierter Thiole bei Patienten mit HCM höher als in der Kontrollgruppe, das Verhältnis oxidierter Thiole dagegen niedriger.

Schlussfolgerungen

Obwohl die antioxidative Kapazität beeinträchtigt war, blieb das extrazelluläre Milieu in einem reduzierten Zustand, indem die Verhältnisse von Disulfiden zu nativem Thiol im Serum niedrig gehalten wurden. Daher vermuten wir, dass sich die HCM in Bezug auf Thiol‑/Disulfidspiegel im Serum ähnlich verhält wie Tumoren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F et al (2014) ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 35(39):2733–2779. https://doi.org/10.1093/eurheartj/ehu284

    Article  PubMed  Google Scholar 

  2. Ho CY, Day SM, Ashley EA, Michels M, Pereira AC, Jacoby D, Cirino AL, Fox JC, Lakdawala NK, Ware JS, Caleshu CA, Helms AS, Colan SD, Girolami F, Cecchi F, Seidman CE, Sajeev G, Signorovitch J, Green EM, Olivotto I (2018) Genotype and lifetime burden of disease in hypertrophic cardiomyopathy: insights from the sarcomeric human cardiomyopathy registry (SHaRe). Circulation 138(14):1387–1398. https://doi.org/10.1161/CIRCULATIONAHA.117.033200

    Article  PubMed  PubMed Central  Google Scholar 

  3. Frey N, Luedde M, Katus HA (2011) Mechanisms of disease: hypertrophic cardiomyopathy. Nat Rev Cardiol 9(2):91–100. https://doi.org/10.1038/nrcardio.2011.159

    Article  CAS  PubMed  Google Scholar 

  4. Erel O, Neselioglu S (2014) A novel and automated assay for thiol/disulphide homeostasis. Clin Biochem 47(18):326–332. https://doi.org/10.1016/j.clinbiochem.2014.09.026

    Article  CAS  PubMed  Google Scholar 

  5. Altiparmak IH, Erkus ME, Sezen H, Demirbag R, Kaya Z, Sezen Y, Gunebakmaz O, Asoglu R, Besli F, Neselioglu S, Erel O (2016) Evaluation of thiol levels, thiol/disulfide homeostasis and their relation with inflammation in cardiac syndrome X. Coron Artery Dis 27(4):295–301. https://doi.org/10.1097/MCA.0000000000000362

    Article  PubMed  Google Scholar 

  6. Altıparmak IH, Erkuş ME, Sezen H, Demirbag R, Gunebakmaz O, Kaya Z, Sezen Y, Asoglu R, Dedeoglu IH, Neselioglu S, Erel O (2016) The relation of serum thiol levels and thiol/disulphide homeostasis with the severity of coronary artery disease. Kardiol Pol 74(11):1346–1353. https://doi.org/10.5603/KP.a2016.0085

    Article  PubMed  Google Scholar 

  7. Kızıltunç E, Gök M, Kundi H, Çetin M, Topçuoğlu C, Gülkan B, Çiçekçioğlu H, Örnek E (2016) Plasma thiols and thiol-disulfide homeostasis in patients with isolated coronary artery ectasia. Atherosclerosis 253:209–213. https://doi.org/10.1016/j.atherosclerosis.2016.07.904

    Article  CAS  PubMed  Google Scholar 

  8. Kundi H, Ates I, Kiziltunc E, Cetin M, Cicekcioglu H, Neselioglu S, Erel O, Ornek E (2015) A novel oxidative stress marker in acute myocardial infarction; thiol/disulphide homeostasis. Am J Emerg Med 33(11):1567–1571. https://doi.org/10.1016/j.ajem.2015.06.016

    Article  PubMed  Google Scholar 

  9. Ergin M, Caliskanturk M, Senat A, Akturk O, Erel O (2016) Disulfide stress in carbon monoxide poisoning. Clin Biochem 49(16/17):1243–1247. https://doi.org/10.1016/j.clinbiochem.2016.07.019

    Article  CAS  PubMed  Google Scholar 

  10. Topuz M, Kaplan M, Akkus O, Sen O, Yunsel HD, Allahverdiyev S, Erel O, Koc M, Gur M (2016) The prognostic importance of thiol/disulfide homeostasis in patients with acute pulmonary thromboembolism. Am J Emerg Med 34(12):2315–2319. https://doi.org/10.1016/j.ajem.2016.08.039

    Article  PubMed  Google Scholar 

  11. Dinc ME, Ozdemir C, Ayan NN, Bozan N, Ulusoy S, Koca C, Erel O (2017) Thiol/disulfide homeostasis as a novel indicator of oxidative stress in obstructive sleep apnea patients. Laryngoscope 127(7):244–250. https://doi.org/10.1002/lary.26444

    Article  CAS  Google Scholar 

  12. Ates I, Ozkayar N, Inan B, Yilmaz FM, Topcuoglu C, Neselioglu S, Erel O, Dede F, Yilmaz N (2016) Dynamic thiol/disulphide homeostasis in patients with newly diagnosed primary hypertension. J Am Soc Hypertens 10(2):159–166. https://doi.org/10.1016/j.jash.2015.12.008

    Article  CAS  PubMed  Google Scholar 

  13. Ergin M, Aydin C, Yurt EF, Cakir B, Erel O (2018) The variation of disulfides in the progression of type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes. https://doi.org/10.1055/s-0044-100376

    Article  PubMed  Google Scholar 

  14. Bektas H, Vural G, Gumusyayla S, Deniz O, Alisik M, Erel O (2016) Dynamic thiol–disulfide homeostasis in acute ischemic stroke patients. Acta Neurol Belg 116(4):489–494. https://doi.org/10.1007/s13760-016-0598-1

    Article  PubMed  Google Scholar 

  15. Eroglu S, Haskul I, Aziz V, Yurtcu E, Karatas F, Neselioglu S, Erel O (2017) Dynamic thiol/disulphide homeostasis in patients with uterine myoma. Eur J Obstet Gynecol Reprod Biol 216:24–26. https://doi.org/10.1016/j.ejogrb.2017.06.045

    Article  CAS  PubMed  Google Scholar 

  16. Guney T, Kanat IF, Alkan A, Alisik M, Akinci S, Silay K, Neselioglu S, Dilek I, Erel O (2017) Assessment of serum thiol/disulfide homeostasis in multiple myeloma patients by a new method. Redox Rep 22(6):246–251. https://doi.org/10.1080/13510002.2016.1180100

    Article  CAS  PubMed  Google Scholar 

  17. Hanikoglu F, Hanikoglu A, Kucuksayan E, Alisik M, Gocener AA, Erel O, Baykara M, Cuoghi A, Tomasi A, Ozben T (2016) Dynamic thiol/disulphide homeostasis before and after radical prostatectomy in patients with prostate cancer. Free Radic Res 50(1):79–84. https://doi.org/10.1080/10715762.2016.1235787

    Article  CAS  Google Scholar 

  18. Dirican N, Dirican A, Sen O, Aynali A, Atalay S, Bircan HA, Oztürk O, Erdogan S, Cakir M, Akkaya A (2016) Thiol/disulfide homeostasis: a prognostic biomarker for patients with advanced non-small cell lung cancer? Redox Rep 21(5):197–203. https://doi.org/10.1179/1351000215Y.0000000027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin CS, Liu CY, Sun YL, Chang LC, Chiu YT, Huang SY, Lin JH, Yang PC, Chu R, Huang MC, Mao SJ (1997) Alteration of endogenous antioxidant enzymes in naturally occurring hypertrophic cardiomyopathy. Biochem Mol Biol Int 43(6):1253–1263

    CAS  PubMed  Google Scholar 

  20. Christiansen LB, Dela F, Koch J, Hansen CN, Leifsson PS, Yokota T (2015) Impaired cardiac mitochondrial oxidative phosphorylation and enhanced mitochondrial oxidative stress in feline hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 308(10):1237–1247. https://doi.org/10.1152/ajpheart.00727.2014

    Article  CAS  Google Scholar 

  21. Dimitrow PP, Undas A, Wolkow P, Tracz W, Dubiel JS (2009) Enhanced oxidative stress in hypertrophic cardiomyopathy. Pharmacol Rep 61(3):491–495

    Article  CAS  Google Scholar 

  22. Nakamura K, Kusano KF, Matsubara H, Nakamura Y, Miura A, Nishii N, Banba K, Nagase S, Miyaji K, Morita H, Saito H, Emori T, Ohe T (2005) Relationship between oxidative stress and systolic dysfunction in patients with hypertrophic cardiomyopathy. J Card Fail 11(2):117–123

    Article  CAS  Google Scholar 

  23. Lombardi R, Rodriguez G, Chen SN, Ripplinger CM, Li W, Chen J, Willerson JT, Betocchi S, Wickline SA, Efimov IR, Marian AJ (2009) Resolution of established cardiac hypertrophy and fibrosis and prevention of systolic dysfunction in a transgenic rabbit model of human cardiomyopathy through thiol-sensitive mechanisms. Circulation 119(10):1398–1407. https://doi.org/10.1161/CIRCULATIONAHA.108.790501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marian AJ, Senthil V, Chen SN, Lombardi R (2006) Antifibrotic effects of antioxidant N‑acetylcysteine in a mouse model of human hypertrophic cardiomyopathy mutation. J Am Coll Cardiol 47(4):827–834. https://doi.org/10.1016/j.jacc.2005.10.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wilder T, Ryba DM, Wieczorek DF, Wolska BM, Solaro RJ (2015) N‑acetylcysteine reverses diastolic dysfunction and hypertrophy in familial hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 309(10):1720–1730. https://doi.org/10.1152/ajpheart.00339.2015

    Article  CAS  Google Scholar 

  26. Marian AJ, Tan Y, Li L, Chang J, Syrris P, Hessabi M, Rahbar MH, Willerson JT, Cheong BY, Liu CY, Kleiman NS, Bluemke DA, Nagueh SF (2018) Hypertrophy regression with N‑acetylcysteine in hypertrophic cardiomyopathy (HALT-HCM): a randomized, placebo-controlled, double-blind pilot study. Circ Res 122(8):1109–1118. https://doi.org/10.1161/CIRCRESAHA.117.312647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Senthil V, Chen SN, Tsybouleva N, Halder T, Nagueh SF, Willerson JT, Roberts R, Marian AJ (2005) Prevention of cardiac hypertrophy by atorvastatin in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circ Res 97(3):285–292. https://doi.org/10.1161/01.RES.0000177090.07296.ac

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Patel R, Nagueh SF, Tsybouleva N, Abdellatif M, Lutucuta S, Kopelen HA, Quinones MA, Zoghbi WA, Entman ML, Roberts R, Marian AJ (2001) Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation 104(3):317–324

    Article  CAS  Google Scholar 

  29. Marian AJ, Braunwald E (2017) Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res 121(7):749–770. https://doi.org/10.1161/CIRCRESAHA.117.311059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sugden PH, Clerk A (2006) Oxidative stress and growth-regulating intracellular signaling pathways in cardiac myocytes. Antioxid Redox Signal 8(11/12):2111–2124. https://doi.org/10.1089/ars.2006.8.2111

    Article  CAS  PubMed  Google Scholar 

  31. Kirlin WG, Cai J, Thompson SA, Diaz D, Kavanagh TJ, Jones DP (1999) Glutathione redox potential in response to differentiation and enzyme inducers. Free Radic Biol Med 27(11/12):1208–1218. https://doi.org/10.1016/S0891-5849(99)00145-8

    Article  CAS  PubMed  Google Scholar 

  32. Jonas CR, Ziegler TR, Gu LH, Jones DP (2002) Extracellular thiol/disulfide redox state affects proliferation rate in a human colon carcinoma (Caco2) cell line. Free Radic Biol Med 33(11):1499–1506

    Article  CAS  Google Scholar 

  33. Kwon SH, Pimentel DR, Remondino A, Sawyer DB, Colucci WS (2003) H2O2 regulates cardiac myocyte phenotype via concentration-dependent activation of distinct kinase pathways. J Mol Cell Cardiol 35(6):615–621

    Article  CAS  Google Scholar 

  34. Lang CA, Mills BJ, Mastropaolo W, Liu MC (2000) Blood glutathione decreases in chronic diseases. J Lab Clin Med 135(5):402–405. https://doi.org/10.1067/mlc.2000.105977

    Article  CAS  PubMed  Google Scholar 

  35. Liu RM, Liu Y, Forman HJ, Olman M, Tarpey MM (2004) Glutathione regulates transforming growth factor-β-stimulated collagen production in fibroblasts. Am J Physiol Lung Cell Mol Physiol 286:L121. https://doi.org/10.1152/ajplung.00231.2003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Dr. Ramazan Akdemir, the dean of the Medicine Faculty of Sakarya University, for all his contributions to this research.

Funding

This research was supported by a Sakarya University Project Support Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munevver Sari MD.

Ethics declarations

Conflict of interest

M. Sari, U. Erkorkmaz, H. Yazar, I. Kocayigit, B. Omar, E. Alizade, M.N.M. Aksoy, A. Uslu, G.C. Cakar and S. Pala declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sari, M., Erkorkmaz, U., Yazar, H. et al. Dynamic thiol/disulphide homeostasis in patients with hypertrophic cardiomyopathy. Herz 46, 164–171 (2021). https://doi.org/10.1007/s00059-019-04853-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-019-04853-7

Keywords

Schlüsselwörter

Navigation