Skip to main content

Advertisement

Log in

Identification of novel benzoyl hydrazine derivatives as activators of neddylation pathway to inhibit the tumor progression in vitro

  • Original Research Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Neddylation modification is frequently overexpressed in many types of human tumors. As a result, targeting neddylation pathway has been identified as viable anticancer therapeutic strategy. The NEDD8-activating enzyme (NAE) serves as a crucial role in a variety of cellular functions. Here, a new library of piperidine analogs was developed, produced and assessed for antiproliferative efficacy against A549, MGC-803, MCF-7KYSE-30 cell lines. The cell-based mechanistic studies showed that IIb-10 bearing the benzoyl hydrazine motif can selectively inhibit the Neddylation modification of Cullin1 and Cullin3 by inhibiting NEDD8 activase and then, leads to a dose-dependent reduction in the level of UBC12-NEDD8 complex via interacting with NAE1 directly. Cellular mechanisms elucidated that compound IIb-10 has the ability to halt the cell cycle of MGC-803 cells at G2/M phase and trigger apoptosis. Altogether, the hydrazide -linked piperidine derivatives may be promising candidates as lead compounds for the development of highly effective neddylation inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jin L, Williamson A, Banerjee S, Philipp I, Rape M. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell. 2008;133:653–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Newton K, Matsumoto ML, Wertz IE, Kirkpatrick DS, Lill JR, Tan J, et al. Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell. 2008;134:668–78.

    Article  CAS  PubMed  Google Scholar 

  3. Walczak H, Iwai K, Dikic I. Generation and physiological roles of linear ubiquitin chains. BMC Biol. 2012;10:23.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wickliffe KE, Williamson A, Meyer HJ, Kelly A, Rape M. K11-linked ubiquitin chains as novel regulators of cell division. Trends Cell Biol. 2011;21:656–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kumar S, Yoshida Y, Noda M. Cloning of a cDNA which encodes a novel ubiquitin-like protein. Biochem. Biochem. Bioph. Res. Co. 1993;195:393–9.

    Article  CAS  Google Scholar 

  6. Soucy TA, Smith PG, Milhollen MA, Berger AJ, Langston SP. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature. 2009;458:732–6.

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Yoshimura C, Muraoka H, Ochiiwa H, Tsuji S, Hashimoto A, Kazuno H, et al. TAS4464, A Highly Potent and Selective Inhibitor of NEDD8-Activating Enzyme, Suppresses Neddylation and Shows Antitumor Activity in Diverse Cancer Models. Mol. Cancer Thera. 2019;18:1205–16.

    Article  CAS  Google Scholar 

  8. Yamamoto N, Shimizu T, Yonemori K, Kitano S, Takahashi S. A first-in-human, phase 1 study of the NEDD8 activating enzyme E1 inhibitor TAS4464 in patients with advanced solid tumors. Investig New Drugs. 2021;39:1036–46.

    Article  CAS  Google Scholar 

  9. Lu P, Liu X, Yuan X, He M, Wang Y, Zhang Q, et al. Discovery of a novel NEDD8 Activating Enzyme Inhibitor with Piperidin-4-amine Scaffold by Structure-Based Virtual Screening. Acs Chem Biol. 2016;11:1901–06.

    Article  CAS  PubMed  Google Scholar 

  10. Liu X, Zhang L, Tan JG, Xu HH. Design and synthesis of N-alkyl-N′-substituted 2,4-dioxo-3,4-dihydropyrimidin-1-diacylhydrazine derivatives as ecdysone receptor agonist. Bioorg. Med. Chem. 2013;21:4687–97.

    Article  CAS  PubMed  Google Scholar 

  11. Moosa BA, Ali SA. Regioselective transformation of 6/5-fused bicyclic isoxazolidines to second-generation cyclic aldonitrones. Arkivoc. 2010;10:132–48.

    Article  Google Scholar 

  12. Jain N, Aeluri R, Alla M, et al. Synthesis and antiproliferative activity of imidazo[1,2-a]pyrimidine Mannich bases. Eur. J Med. Chem. 2015;100:18–23.

    Article  PubMed  Google Scholar 

  13. Zanin L, Jimenez D, Birolli W, Venncio T, Valdes T, Leito A, et al. Synthesis of 1,2,3-triazole Compounds by Click Chemistry in Aqueous Medium and Evaluation of Bactericidal and Antitumoral Properties. Curr Bioactive Compounds. 2022;18:10.

    Article  Google Scholar 

  14. Widler L, Green J, Missbach M, Ua M, Altmann E. 7-Alkyl- and 7-Cycloalkyl-5-aryl-pyrrolo[2,3- d]pyrimidines—potent inhibitors of the tyrosine kinase c-Src. Bioorg. Med. Chem. Lett. 2001;11:849–52.

    Article  CAS  PubMed  Google Scholar 

  15. Garcia J, Mata EG, Tice CM, Hormann RE, Michelotti EL. Evaluation of Solution and Solid-Phase Approaches to the Synthesis of Libraries of α,α-Disubstituted-α-acylaminoketones. J Comb. Chem. 2005;7:843–63.

    Article  CAS  PubMed  Google Scholar 

  16. Wang J, Li F, Pei W, Yang M, Wu Y, Ma D, et al. Selective cleavage of the N-propargyl group from sulfonamides and amides under ruthenium catalysis. Tetrahedron Lett. 2018;59:1902–5.

    Article  CAS  Google Scholar 

  17. Kettler K, Sakowski J, Wiesner J, Ortmann R, Jomaa H, Schlitzer M. Novel lead structures for antimalarial farnesyltransferase inhibitors. Pharmazie. 2005;60:323–27.

    CAS  PubMed  Google Scholar 

  18. Xu J, Berastegui-Cabrera J, Ye N, Carretero-Ledesma M, Zhou J. Discovery of Novel Substituted N-(4-Amino-2-chlorophenyl)-5-chloro-2-hydroxybenzamide Analogues as Potent Human Adenovirus Inhibitors. J. Med. Chem. 2020;63:12830–52.

    Article  CAS  PubMed  Google Scholar 

  19. Leipold F, Hussain S, Ghislieri D, Turner NJ. Asymmetric Reduction of Cyclic Imines Catalyzed by a Whole-Cell Biocatalyst Containing an (S)-Imine Reductase. Chemcatchem. 2013;5:3505–8.

    Article  CAS  Google Scholar 

  20. Hoque ME, Hassan MMM, Chattopadhyay B. Remarkably Efficient Iridium Catalysts for Directed C(sp 2)–H and C(sp 3)–H Borylation of Diverse Classes of Substrates. J. Am. Chem. Soc. 2021;143:5022–37.

    Article  CAS  PubMed  Google Scholar 

  21. Xu J, Chen J, Gao F, Xie S, Xu X, Jin Z, et al. Sequential Functionalization of meta-C-H and ipso-C-O Bonds of Phenols. J. Am. Chem. Soc. 2019;141:1903–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kumar R, Yar MS, Rai AK, Chaturvedi S. Synthesis and biological evaluation of some novel 1,3,4-oxadiazoles derived from bi phenyl 4-carboxylic acid. Der Pharm Lett. 2013;5:366–70.

    CAS  Google Scholar 

  23. Xian J, Wang S, Jiang Y, Li L, Cai L, Chen P, et al. Overexpressed NEDD8 as a potential therapeutic target in esophageal squamous cell carcinoma. 癌症生物学与医学: 英文版. 2022;004:019.

    Google Scholar 

  24. Li JA, Song C, Rong Y, Kuang T, Wang D, Xu X, et al. Chk1 inhibitor SCH 900776 enhances the antitumor activity of MLN4924 on pancreatic cancer. Cell Cycle. 2018;17:191–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang Q, Hou D, Luo Z, Chen P, Lv B, Wu L, et al. The novel protective role of P27 in MLN4924-treated gastric cancer cells. Cell Death Dis. 2015;6:e1867.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li L, Kang J, Zhang W, Cai L, Jia L. Validation of NEDD8-conjugating enzyme UBC12 as a new therapeutic target in lung cancer. EBioMedicine. 2019;45:81–91.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Henan science and technology key project (No. 202102310148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moran Sun.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Guan, S., Tian, Z. et al. Identification of novel benzoyl hydrazine derivatives as activators of neddylation pathway to inhibit the tumor progression in vitro. Med Chem Res 33, 504–517 (2024). https://doi.org/10.1007/s00044-024-03193-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-024-03193-4

Keywords

Navigation