Skip to main content

Advertisement

Log in

Novel vitamin K3 analogs containing 3-N-substituted aromatic and piperazine rings with selective in vitro anticancer activity against HeLa, U87 MG, and MCF-7 cells

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

In this study, firstly, novel vitamin K3 analogs were synthesized by the reactions of vitamin K3 (2-methyl-1,4-naphthoquinone, also known as menadione) with some aromatic and heterocyclic ring substituted nucleophiles such as 2,4-dimethoxyaniline, 4-methoxyaniline, 4-benzylpiperidine and 1-(2-aminoethyl)piperazine in ethanol/Na2CO3, and 1-(diphenylmethyl)piperazine in chloroform/triethylamine (TEA) at room temperature. Their structures were elucidated by Fourier transform infrared spectroscopy (FT-IR), 1H nuclear magnetic resonance (1H NMR), attached proton test nuclear magnetic resonance (APT-NMR) and mass spectrometry (MS). Secondly, in vitro cytotoxic effects of vitamin K3 analogs were investigated by MTT assay against three cancer cell lines (HeLa, U87 MG, and MCF-7) to evaluate their anticancer activity and a human embryonic kidney cell line (HEK-293) to check their cancer cell selectivity. One of the compounds, namely 2-((2,4-dimethoxyphenyl)amino)-3-methylnaphthalene-1,4-dione(5), was found to inhibit the growth of HeLa cervical cancer cells selectively, even better than vitamin K3, at a non-toxic concentration for healthy cells. The selectivity index of this compound for HeLa cells was calculated approximately as “3”. Vitamin K3 was more effective against U87 MG and MCF-7 cells than its derivatives, moreover it was the only compound, which was significantly toxic to breast cancer cells, but its selectivity was poor. Furthermore, anticancer properties of piperazine derivatives of vitamin K3 were investigated by us for the first time in this study.

Graphical abstract

Novel vitamin K3 analogs containing 3-N-substituted aromatic and piperazine rings with selective in vitro anticancer activity against HeLa, U87 MG, and MCF-7 cells

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1

Similar content being viewed by others

References

  1. Brody T. Nutritional Biochemistry. 2nd ed. San Diego: Academic Press;1999.

  2. Lamson DW, Plaza SM. The anticancer effects of vitamin K. Alter Med Rev. 2003;8:303–18.

    Google Scholar 

  3. Gul W. Menadione: role in cancer prevention and methods of analysis. World J Pharm Sci. 2014;2:1390–4.

    Google Scholar 

  4. Gul S, Maqbool MF, Maryam A, Khan M, Shakir HA, Irfan M, et al. Vitamin K: a novel cancer chemosensitizer. Biotechnol Appl Biochem. 2022;2022:1–17. https://doi.org/10.1002/bab.2312.

    Article  CAS  Google Scholar 

  5. Megías-Vericat JE, Martínez-Cuadrón D, Sanz MÁ, Poveda JL, Montesinos P. Daunorubicin and cytarabine for certain types of poor-prognosis acute myeloid leukemia: a systematic literature review. Expert Rev Clin Pharm. 2019;12:197–218. https://doi.org/10.1080/17512433.2019.1573668.

    Article  CAS  Google Scholar 

  6. Antolín S, Acea B, Albaina L, Concha Á, Santiago P, García-Caballero T, et al. Primary systemic therapy in HER2-positive operable breast cancer using trastuzumab and chemotherapy: efficacy data, cardiotoxicity and long-term follow-up in 142 patients diagnosed from 2005 to 2016 at a single institution. Breast Cancer: Targets Ther. 2019;11:29–42. https://doi.org/10.2147/BCTT.S179750.

    Article  Google Scholar 

  7. Meyer M, Seetharam M. First-line therapy for metastatic soft tissue sarcoma. Curr Treat Options Oncol. 2019;20:6–19. https://doi.org/10.1007/s11864-019-0606-9.

    Article  PubMed  Google Scholar 

  8. Pereyra CE, Dantas RF, Ferreira SB, Gomes LP, Paes Silva-Jr F. The diverse mechanisms and anticancer potential of naphthoquinones. Cancer Cell Int. 2019;19:207–19. https://doi.org/10.1186/s12935-019-0925-8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wellington KW, Hlatshwayo V, Kolesnikova NI, Saha ST, Kaur M, Motadi LR. Anticancer activities of vitamin K3 analogues. Invest N. Drugs. 2020;38:378–91. https://doi.org/10.1007/s10637-019-00855-8.

    Article  CAS  Google Scholar 

  10. Shi MM, Kugelmant A, Iwamoto T, Tiant L, Forman HJ. Quinone-induced oxidative stress elevates glutathione and induces y-glutamylcysteine synthetase activity in rat lung epithelial L2 Cells. J Biol Chem. 1994;269:26512–7.

    Article  CAS  PubMed  Google Scholar 

  11. Nutter LM, Ngo EO, Fisher GR, Gutierrez PL. DNA strand scission and free radical production in menadione-treated cells. Correlation with cytotoxicity and role of NADPH quinone acceptor oxidoreductase. J Biol Chem. 1992;267:2474–9.

    Article  CAS  PubMed  Google Scholar 

  12. D’Odorico A, Sturniolo GC, Bilton RF, Morris AI, Gilmore IT, Naccarato R. Quinone-induced DNA single strand breaks in a human colon carcinoma cell line. Carcinogenesis. 1997;18:43–46. https://doi.org/10.1093/carcin/18.1.43.

    Article  PubMed  Google Scholar 

  13. Kuttruff CA, Geiger S, Cakmak M, Mayer P, Trauner D. An approach to aminonaphthoquinone ansamycins using a modified danishefsky diene. Org Lett. 2012;14:1070–3. https://doi.org/10.1021/ol203437a.

    Article  CAS  PubMed  Google Scholar 

  14. Nawrat CC, Palmer LI, Blake AJ, Moody CJ. Two approaches to the aromatic core of the aminonaphthoquinone antibiotics. J Org Chem. 2013;78:5587–603. https://doi.org/10.1021/jo400737f.

    Article  CAS  PubMed  Google Scholar 

  15. Ivanova D, Zhelev Z, Getsov P, Nikolova B, Aoki I, Higashi T, et al. Vitamin K: Redox-modulation, prevention of mitochondrial dysfunction and anticancer effect. Redox Bio. 2018;l16:352–8. https://doi.org/10.1016/j.redox.2018.03.013.

    Article  CAS  Google Scholar 

  16. Sieveking I, Thomas P, Estévez JC, Quiñones N, Cuéllar MA, Villena J, et al. 2-Phenylaminonaphthoquinones and related compounds: synthesis, trypanocidal and cytotoxic activities. Bioorg Med Chem. 2014;22:4609–20. https://doi.org/10.1016/j.bmc.2014.07.030.

    Article  CAS  PubMed  Google Scholar 

  17. Li J, Zhang X, Xiang H, Tong L, Feng F, Xie H, et al. C-H Trifluoromethylation of 2-substituted/unsubstituted aminonaphthoquinones at room temperature with bench-stable (CF3SO2)2Zn: Synthesis and antiproliferative evaluation. J Org Chem. 2017;82:6795–6800. https://doi.org/10.1021/acs.joc.7b00940.

    Article  CAS  PubMed  Google Scholar 

  18. Benites J, Vaderrama JA, Bettega K, Pedrosa RC, Calderon PB, Verrax J. Biological evaluation of donor-acceptor aminonaphthoquinones as antitumor agents. Eur J Med Chem. 2010;45:6052–7. https://doi.org/10.1016/j.ejmech.2010.10.006.

    Article  CAS  PubMed  Google Scholar 

  19. Baiju TV, Almeida RG, Sivanandan ST, de Simone CA, Brito LM, Cavalcanti BC, et al. Quinonoid compounds via reactions of lawsone and 2-aminonaphthoquinone with α-bromonitroalkenes and nitroallylic acetates: Structural diversity by C-ring modification and cytotoxic evaluation against cancer cells. Eur J Med Chem. 2018;151:686–704. https://doi.org/10.1016/j.ejmech.2018.03.079.

    Article  CAS  PubMed  Google Scholar 

  20. Chadar D, Camilles M, Patil R, Khan A, Salunke-Gawali S. Synthesis and characterization of n-alkylamino derivatives of vitamin K3: Molecular structure of 2-propylamino-3-methyl-1,4-naphthoquinone and antibacterial activities. J Mol Struct. 2015;1086:179–89. https://doi.org/10.1016/j.molstruc.2015.01.029.

    Article  CAS  Google Scholar 

  21. Deniz NG, Ibis C, Gokmen Z, Stasevych M, Novikov V, Komarovska-Porokhnyavets O, et al. Design, synthesis, biological evaluation, and antioxidant and cytotoxic activity of heteroatom-substituted 1, 4-naphtho-and benzoquinones. Chem Pharm Bull. 2015;63:1029–39. https://doi.org/10.1248/cpb.c15-00607.

    Article  CAS  Google Scholar 

  22. Huy PDQ, Yu YC, Ngo ST, Thao TV, Chen CP, Li MS, et al. In silico and in vitro characterization of anti-amyloidogenic activity of vitamin K3 analogues for Alzheimer’s disease. Biochim Biophys Acta. 2013;1830:2960–9. https://doi.org/10.1016/j.bbagen.2012.12.026.

    Article  CAS  PubMed  Google Scholar 

  23. Chen C, Liu YZ, Shia KS, Tseng HY. Synthesis and anticancer evaluation of vitamin K3 analogues. Bioorg Med Chem Lett. 2002;12:2729–32. https://doi.org/10.1016/S0960-894X(02)00532-2.

    Article  CAS  PubMed  Google Scholar 

  24. Hegazy MEF, Fukaya M, Dawood M, Yan G, Klinger A, Fleischer E, et al. Vitamin K3 thio-derivative: a novel specific apoptotic inducer in the doxorubicin-sensitive and -resistant cancer cells. Invest N. Drugs. 2020;38:650–61. https://doi.org/10.1007/s10637-019-00810-7.

    Article  CAS  Google Scholar 

  25. Zheng X, Hou Y, He H, Chen Y, Zhou R, Wang X, et al. Synthetic vitamin K analogs inhibit inflammation by targeting the NLRP3 inflammasome. Cell Mol Immunol. 2021;18:2422–30. https://doi.org/10.1038/s41423-020-00545-z. (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Kurban S, Deniz NG, Sayil C, Ozyurek M, Guclu K, Stasevych M, et al. Synthesis, antimicrobial properties, and inhibition of catalase activity of 1,4-naphtho- and benzoquinone derivatives containing N-, S-, O-substituted. Heteroat Chem. 2019;2019:1–12. https://doi.org/10.1155/2019/1658417.

    Article  CAS  Google Scholar 

  27. Abdassalam AFSH, Kurban S, Deniz NG, Sayil C. Synthesis and characterization of new naphtho-and tetracyclic diazaquinone derivatives. J Chem Soc Pak. 2019;41:834–40.

    CAS  Google Scholar 

  28. Deniz NG, Abdassalam AFSH, Ozyurek M, Yesil EA, Sayil C. New vitamin K3 (menadione) analogues: synthesis, characterization, antioxidant and catalase inhibition activities. J Chem Sci. 2020;132:138–46. https://doi.org/10.1007/s12039-020-01835-9.

    Article  CAS  Google Scholar 

  29. Deniz NG, Ozyurek M, Tufan AN, Apak R. One-pot synthesis, characterization, and antioxidant capacity of sulfur-and oxygen-substituted 1,4-naphthoquinones and a structural study. Monatsh Chem. 2015;146:2117–26. https://doi.org/10.1007/s00706-015-1517-5.

    Article  CAS  Google Scholar 

  30. Tandon VK, Maurya HK, Mishra NN, Shukla PK. Design, synthesis and biological evaluation of novel nitrogen and sulfur containing hetero-1,4-naphthoquinones as potent antifungal and antibacterial agents. Eur J Med Chem. 2009;44:3130–7. https://doi.org/10.1016/j.ejmech.2009.03.006.

    Article  CAS  PubMed  Google Scholar 

  31. Kacmaz A, Deniz N, Aydinli SG, Sayil C, Onay-Ucar E, Mertoglu E, et al. Synthesis and antiproliferative evaluation of some 1,4-naphthoquinone derivatives against human cervical cancer cells. Open Chem. 2019;17:337–45. https://doi.org/10.1515/chem-2019-0030.

    Article  CAS  Google Scholar 

  32. Liu B, Shun-Jun J. Facile synthesis of 2-amino-1,4-naphthoquinones catalyzed by molecular iodine under ultrasonic irradiation. Synth Commun. 2008;38:1201–11. https://doi.org/10.1080/00397910701866254.

    Article  CAS  Google Scholar 

  33. Ohta S, Hinata Y, Yamashita M, Kawasaki I, Jinda Y, Horie S. One step synthesis of 1,2,3,4-Tetrahydrobenzo[g]quinazoline-5,10-dione derivatives from Vitamin K3. Chem Pharm Bull. 1994;42:1730–5. https://doi.org/10.1248/cpb.42.1730.

    Article  CAS  Google Scholar 

  34. Cameron DW, Scott PM. Facile loss of C-methyl groups during the amination of quinones. J Chem Soc. 1964;1066:5569–73.

    Article  Google Scholar 

  35. Kutyrev A, Moskva V. Nucleophilic reactions of quinones. Russ Chem Rev. 1991;60:72–88. https://doi.org/10.1070/RC1991v060n01ABEH001032.

    Article  Google Scholar 

  36. Kuete V, Efferth T. African flora has the potential to fight multidrug resistance of cancer. Biomed Res Int. 2015;2015:914813 https://doi.org/10.1155/2015/914813.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Calderón-Montaño JM, Martínez-Sánchez SM, Jiménez-González V, Burgos-Morón E, Guillén-Mancina E, Jiménez-Alonso JJ, et al. Screening for selective anticancer activity of 65 extracts of plants collected in Western Andalusia, Spain. Plants. 2021;10:2193 https://doi.org/10.3390/plants10102193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. López-Lázaro M. A simple and reliable approach for assessing anticancer activity in vitro. Curr Med Chem. 2015;22:1324–34. https://doi.org/10.2174/0929867322666150209150639.

    Article  CAS  PubMed  Google Scholar 

  39. He T, Hatem E, Vernis L, Lei M, M-Er Huang. PRX1 knockdown potentiates vitamin K3 toxicity in cancer cells: a potential new therapeutic perspective for an old drug. J Exp Clin Cancer Res. 2015;34:152–64. https://doi.org/10.1186/s13046-015-0270-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ciftci HI, Bayrak N, Yıldız M, Yıldırım H, Sever B, Tateishi H, et al. Design, synthesis and investigation of the mechanism of action underlying anti-leukemic effects of the quinolinequinones as LY83583 analogs. Bioorg Chem. 2021;114:105160 https://doi.org/10.1016/j.bioorg.2021.105160.

    Article  CAS  PubMed  Google Scholar 

  41. Yousuf M, Jinka S, Adhikari SS, Banerjee R. Methoxy-enriched cationic stilbenes as anticancer therapeutics. Bioorg Chem. 2020;98:103719 https://doi.org/10.1016/j.bioorg.2020.103719.

    Article  CAS  PubMed  Google Scholar 

  42. Mital M, Mahlavat S, Bindal S, Sonawane M, Negi V. Synthesis and biological evaluation of alkyl/arylamino derivatives of naphthalene-1,4-dione as antimycobacterial agents. Der Pharma Chem. 2010;2:309–15.

    CAS  Google Scholar 

  43. Bhasin D, Chettiar SN, Etter JP, Mok M, Li PK. Anticancer activity and SAR studies of substituted 1,4-naphthoquinones. Bioorg Med Chem. 2013;21:4662–4669. https://doi.org/10.1016/j.bmc.2013.05.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4.

    Article  CAS  PubMed  Google Scholar 

  45. Onay-Ucar E, Erol O, Kandemir B, Mertoglu E, Karagoz A, Arda N. Viscum album L. extracts protects HeLa cells against nuclear and mitochondrial DNA damage. Evid -based Complement Alter Med. 2012;2012:958740 https://doi.org/10.1155/2012/958740.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully thank the Research Fund of Istanbul University-Cerrahpasa for financial support of this work (Project Numbers: FDK-2017-24871).

Author contributions

AFSHA: Co-Author. The synthesis, purification and characterization of novel vitamin K3 analogs by using spectroscopic techniques. NGD: Co-Author. The synthesis, purification and characterization of novel vitamin K3 analogs by using spectroscopic techniques. CS*: Corresponding author. The synthesis, purification and characterization of novel vitamin K3 analogs by using spectroscopic techniques. EO-U: Co-Author. The determination of cytotoxic effects of novel vitamin K3 analogs. EM: Co-Author. The determination of cytotoxic effects of novel vitamin K3 analogs. NA: Co-Author. The determination of cytotoxic effects of novel vitamin K3 analogs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cigdem Sayil.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdassalam, A.F.S.H., Deniz, N.G., Sayil, C. et al. Novel vitamin K3 analogs containing 3-N-substituted aromatic and piperazine rings with selective in vitro anticancer activity against HeLa, U87 MG, and MCF-7 cells. Med Chem Res 32, 475–484 (2023). https://doi.org/10.1007/s00044-023-03019-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-023-03019-9

Keywords

Navigation