Skip to main content
Log in

A practical approach to RNA interference for studying gene function in a refractory social insect (on a limited budget)

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

With powerful functional genomics tools, including RNA interference (RNAi), the study of gene function is moving from simpler phenotypes in model organisms to more complex traits in non-models. However, optimizing RNAi-mediated gene knockdown for a novel system can be time consuming and expensive, so researchers interested in initiating an RNAi study for functional genomics in a non-model organism will want to consider the successes and failures of RNAi in related species and similar phenotypes. Yet, sub-optimal and negative knockdown results are rarely reported alongside positive ones, so choosing the best methodological parameters can be difficult. Furthermore, social insects pose extra challenges to designing functional genomics studies, as the traits we measure are often part of the extended phenotype of a primary reproductive, emerge from the collective phenotypes of many individuals, and may be the result of a gene taking on a novel functional role in a social system. We attempt to mitigate these challenges for other social insect biologists by reporting our own successes and impediments to optimizing RNAi for the gene vitellogenin in the paper wasp Polistes fuscatus. We discuss the many factors that can affect RNAi experimental design and which parameters worked optimally for our study, as well as compile a list of working parameters from previous RNAi studies in social Hymenoptera. We highlight the difficulties of RNAi that are specific to social Hymenoptera, including the potential differences in RNA efficacy across behavioral caste, and share results on our optimized parameters as a potential roadmap for other social insect biologists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data will be made available upon request.

References

  • Aigner A (2006) Delivery systems for the direct application of siRNAs to induce RNA interference (RNAi) In Vivo. J Biomed Biotechnol 2006:1–15. https://doi.org/10.1155/JBB/2006/71659

    Article  CAS  Google Scholar 

  • Amdam GV, Norberg K, Hagen A, Omholt SW (2003) Social exploitation of vitellogenin. Proc Natl Acad Sci 100(4):1799–1802. https://doi.org/10.1073/pnas.0333979100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amdam GV, Norberg K, Page RE, Erber J, Scheiner R (2006) Downregulation of vitellogenin gene activity increases the gustatory responsiveness of honey bee workers (Apis mellifera). Behav Brain Res 169(2):201–205. https://doi.org/10.1016/j.bbr.2006.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amdam GV, Omholt SW (2003) The hive bee to forager transition in honeybee colonies: the double repressor hypothesis. J Theor Biol 223(4):451–464. https://doi.org/10.1016/S0022-5193(03)00121-8

    Article  CAS  PubMed  Google Scholar 

  • Amdam GV, Simões ZL, Guidugli KR, Norberg K, Omholt SW (2003) Disruption of vitellogenin gene function in adult honeybees by intra-abdominal injection of double-stranded RNA. BMC Biotechnol 3(1):1. https://doi.org/10.1186/1472-6750-3-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Aronstein K, Saldivar E (2005) Characterization of a honey bee Toll related receptor gene Am 18w and its potential involvement in antimicrobial immune defense. Apidologie 36(1):3–14

    Article  CAS  Google Scholar 

  • Barnett MJ, Doroudgar S, Khosraviani V, Ip EJ (2022) Multiple comparisons: To compare or not to compare, that is the question. Res Social Adm Pharm 18(2):2331–2334

    Article  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (Methodol) 57(1):289–300

    Google Scholar 

  • Berens AJ, Hunt JH, Toth AL (2015) Comparative transcriptomics of convergent evolution: different genes but conserved pathways underlie caste phenotypes across lineages of eusocial insects. Mol Biol Evol 32(3):690–703. https://doi.org/10.1093/molbev/msu330

    Article  CAS  PubMed  Google Scholar 

  • Berens AJ, Tibbetts EA, Toth AL (2016) Candidate genes for individual recognition in Polistes fuscatus paper wasps. J Comp Physiol A 202(2):115–129

    Article  CAS  Google Scholar 

  • Beye M, Hasselmann M, Fondrk MK, Page RE Jr, Omholt SW (2003) The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell 114(4):419–429

    Article  CAS  PubMed  Google Scholar 

  • Bonasio R, Li Q, Lian J, Mutti NS, Jin L, Zhao H, Zhang P, Wen P, Xiang H, Ding Y (2012) Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator. Curr Biol 22(19):1755–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brutscher LM, Flenniken ML (2015) RNAi and antiviral defense in the honey bee. J Immunol Res 2015:1–10. https://doi.org/10.1155/2015/941897

    Article  CAS  Google Scholar 

  • Burand JP, Hunter WB (2013) RNAi: future in insect management. J Invertebr Pathol 112:S68–S74. https://doi.org/10.1016/j.jip.2012.07.012

    Article  CAS  PubMed  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL (2009) The MIQE Guidelines: M inimum I nformation for Publication of Q uantitative Real-Time PCR E xperiments. Oxford University Press.

  • Chatham K (1999) Planned Contrasts: An Overview of Comparison Methods.

  • Corona M, Velarde RA, Remolina S, Moran-Lauter A, Wang Y, Hughes KA, Robinson GE (2007) Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proc Natl Acad Sci 104(17):7128–7133. https://doi.org/10.1073/pnas.0701909104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa CP, Elias-Neto M, Falcon T, Dallacqua RP, Martins JR, Bitondi MMG (2016) RNAi-mediated functional analysis of bursicon genes related to adult cuticle formation and tanning in the honeybee. Apis mellifera PloS One 11(12):e0167421

    Article  PubMed  Google Scholar 

  • Daugherty THF, Toth AL, Robinson GE (2011) Nutrition and division of labor: Effects on foraging and brain gene expression in the paper wasp Polistes metricus: NUTRITIONAL REGULATION OF PAPER WASP FORAGING. Mol Ecol 20(24):5337–5347. https://doi.org/10.1111/j.1365-294X.2011.05344.x

    Article  CAS  PubMed  Google Scholar 

  • Dearden PK, Duncan EJ, Wilson MJ (2009) The Honeybee Apis mellifera. Cold Spring Harbor Protocols, 2009(6), pdb.emo123. https://doi.org/10.1101/pdb.emo123

  • Deshwal S, Mallon EB (2014) Antimicrobial peptides play a functional role in bumblebee anti-trypanosome defense. Dev Comp Immunol 42(2):240–243. https://doi.org/10.1016/j.dci.2013.09.004

    Article  CAS  PubMed  Google Scholar 

  • Du L, Wang M, Li J, He S, Huang J, Wu J (2019) Characterization of a Vitellogenin Receptor in the Bumblebee, Bombus lantschouensis (Hymenoptera, Apidae). Insects, 10(12), Article 12. https://doi.org/10.3390/insects10120445

  • Du Y, Chen J (2021) The odorant binding protein, SiOBP5, mediates alarm pheromone olfactory recognition in the red imported fire ant. Solenopsis invicta Biomolecules 11(11):1595

    Article  CAS  PubMed  Google Scholar 

  • El Hassani AK, Schuster S, Dyck Y, Demares F, Leboulle G, Armengaud C (2012) Identification, localization and function of glutamate-gated chloride channel receptors in the honeybee brain. Eur J Neurosci 36(4):2409–2420

    Article  PubMed  Google Scholar 

  • Evans JD, Schwarz RS, Chen YP, Budge G, Cornman RS, De la Rua P, de Miranda JR, Foret S, Foster L, Gauthier L, Genersch E, Gisder S, Jarosch A, Kucharski R, Lopez D, Lun CM, Moritz RFA, Maleszka R, Muñoz I, Pinto MA (2013) Standard methods for molecular research in Apis mellifera. J Apic Res 52(4):1–54. https://doi.org/10.3896/IBRA.1.52.4.11

    Article  CAS  Google Scholar 

  • Fischman BJ, Woodard SH, Robinson GE (2011) Molecular evolutionary analyses of insect societies. Proc Natl Acad Sci 108(Supplement 2):10847–10854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghanim M, Kontsedalov S, Czosnek H (2007) Tissue-specific gene silencing by RNA interference in the whitefly Bemisia tabaci (Gennadius). Insect Biochem Mol Biol 37(7):732–738. https://doi.org/10.1016/j.ibmb.2007.04.006

    Article  CAS  PubMed  Google Scholar 

  • Glastad KM, Graham RJ, Ju L, Roessler J, Brady CM, Berger SL (2020) Epigenetic regulator CoREST controls social behavior in ants. Molecular Cell, 77(2):338–351. e6.

  • Guidugli KR, Nascimento AM, Amdam GV, Barchuk AR, Omholt S, Simões ZLP, Hartfelder K (2005) Vitellogenin regulates hormonal dynamics in the worker caste of a eusocial insect. FEBS Lett 579(22):4961–4965. https://doi.org/10.1016/j.febslet.2005.07.085

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Wang Y, Sinakevitch I, Lei H, Smith BH (2018) Comparison of RNAi knockdown effect of tyramine receptor 1 induced by dsRNA and siRNA in brains of the honey bee, Apis mellifera. J Insect Physiol 111:47–52. https://doi.org/10.1016/j.jinsphys.2018.10.005

    Article  CAS  PubMed  Google Scholar 

  • Hagedorn HH, Kunkel JG (1979) Vitellogenin and vitellin in insects. Annu Rev Entomol 24(1):475–505

    Article  CAS  Google Scholar 

  • Hamilton AR, Traniello IM, Ray AM, Caldwell AS, Wickline SA, Robinson GE (2019) Division of labor in honey bees is associated with transcriptional regulatory plasticity in the brain. J Exp Biol jeb.200196. https://doi.org/10.1242/jeb.200196

  • Hartfelder K, Engels W (1998) 2 social insect polymorphism: hormonal regulation of plasticity in development and reproduction in the honeybee. In: Current Topics in Developmental Biology (Vol. 40, pp. 45–77). Elsevier. https://doi.org/10.1016/S0070-2153(08)60364-6

  • Hu Z, Lee KS, Choo YM, Yoon HJ, Lee SM, Lee JH, Kim DH, Sohn HD, Jin BR (2010) Molecular cloning and characterization of 1-Cys and 2-Cys peroxiredoxins from the bumblebee Bombus ignitus. Comp Biochem Physiol B: Biochem Mol Biol 155(3):272–280. https://doi.org/10.1016/j.cbpb.2009.11.011

    Article  CAS  PubMed  Google Scholar 

  • Hunt JH (2007) The evolution of social wasps. Oxford University Press

    Book  Google Scholar 

  • Hunt JH, Mutti NS, Havukainen H, Henshaw MT, Amdam GV (2011) Development of an RNA interference tool, characterization of its target, and an ecological test of caste differentiation in the eusocial wasp Polistes. PLoS ONE 6(11):e26641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter W, Ellis J, Vanengelsdorp D, Hayes J, Westervelt D, Glick E, Williams M, Sela I, Maori E, Pettis J (2010) Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae). PLoS Pathog 6(12):e1001160

    Article  PubMed  PubMed Central  Google Scholar 

  • Jandt JM, Toth AL (2015) Physiological and genomic mechanisms of social organization in wasps (Family: Vespidae). In: Advances in Insect Physiology (Vol. 48, pp. 95–130). Elsevier. https://doi.org/10.1016/bs.aiip.2015.01.003

  • Jarosch A, Moritz RFA (2011) Systemic RNA-interference in the honeybee Apis mellifera: Tissue dependent uptake of fluorescent siRNA after intra-abdominal application observed by laser-scanning microscopy. J Insect Physiol 57(7):851–857. https://doi.org/10.1016/j.jinsphys.2011.03.013

    Article  CAS  PubMed  Google Scholar 

  • Kim BY, Lee KS, Yoon HJ, Kim I, Li J, Sohn HD, Jin BR (2009) Expression profile of the iron-binding proteins transferrin and ferritin heavy chain subunit in the bumblebee Bombus ignitus. Comp Biochem Physiol B 153(2):165–170. https://doi.org/10.1016/j.cbpb.2009.02.014

    Article  CAS  PubMed  Google Scholar 

  • Klowden MJ (2013) Physiological systems in insects. Academic press.

  • Li W, Evans JD, Huang Q, Rodríguez-García C, Liu J, Hamilton M, Grozinger CM, Webster TC, Su S, Chen YP (2016) Silencing the honey bee (Apis mellifera) naked cuticle gene (nkd) improves host immune function and reduces Nosema ceranae infections. Appl Environ Microbiol 82(22):6779–6787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li-Byarlay H, Li Y, Stroud H, Feng S, Newman TC, Kaneda M, Hou KK, Worley KC, Elsik CG, Wickline SA (2013) RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee. Proc Natl Acad Sci 110(31):12750–12755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin H, Winston ML (1998) The role of nutrition and temperature in the ovarian development of the worker honey bee (Apis mellifera). Can Entomol 130(6):883–891. https://doi.org/10.4039/Ent130883-6

    Article  Google Scholar 

  • Lin H, Winston ML, Haunerland NH, Slessor KN (1999) Influence of age and population size on ovarian development, and of trophallaxis on ovarian development and vitellogenin titres of queenless worker honey bee (Hymenoptera: Apidae). Can Entomol 131(5):695–706. https://doi.org/10.4039/Ent131695-5

    Article  Google Scholar 

  • Liutkevičiūte Z, Gil-Mansilla E, Eder T, Casillas-Pérez B, Di Giglio MG, Muratspahić E, Grebien F, Rattei T, Muttenthaler M, Cremer S (2018) Oxytocin-like signaling in ants influences metabolic gene expression and locomotor activity. FASEB J 32(12):6808–6821

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • London SE (2020) Gene manipulation to test links between genome, brain and behavior in developing songbirds: a test case. Journal of Experimental Biology, 223(Suppl_1), jeb206516. https://doi.org/10.1242/jeb.206516

  • Lu H-L, Vinson SB, Pietrantonio PV (2009) Oocyte membrane localization of vitellogenin receptor coincides with queen flying age, and receptor silencing by RNAi disrupts egg formation in fire ant virgin queens. FEBS J 276(11):3110–3123

    Article  CAS  PubMed  Google Scholar 

  • Maleszka J, Forêt S, Saint R, Maleszka R (2007) RNAi-induced phenotypes suggest a novel role for a chemosensory protein CSP5 in the development of embryonic integument in the honeybee (Apis mellifera). Dev Genes Evol 217(3):189–196

    Article  CAS  PubMed  Google Scholar 

  • Manfredini F, Brown MJ, Toth AL (2018) Candidate genes for cooperation and aggression in the social wasp Polistes dominula. J Comp Physiol A 204(5):449–463

    Article  CAS  Google Scholar 

  • Marco Antonio DS, Guidugli-Lazzarini KR, Do Nascimento AM, Simões ZLP, Hartfelder K (2008) RNAi-mediated silencing of vitellogenin gene function turns honeybee (Apis mellifera) workers into extremely precocious foragers. Naturwissenschaften 95(10):953–961

    Article  CAS  PubMed  Google Scholar 

  • Matthews RW, Ross KG (1991). The Social Biology of Wasps. https://doi.org/10.7591/9781501718670

    Article  Google Scholar 

  • Medved V, Huang ZY, Popadić A (2014) Ubx promotes corbicular development in Apis mellifera. Biol Let 10(1):20131021

    Article  Google Scholar 

  • Mello CC, Conte D (2004) Revealing the world of RNA interference. Nature 431(7006):338–342. https://doi.org/10.1038/nature02872

    Article  CAS  PubMed  Google Scholar 

  • Michener CD (1969) Comparative social behavior of bees. Annu Rev Entomol 14(1):299–342

    Article  Google Scholar 

  • Miller SE, Legan AW, Henshaw MT, Ostevik KL, Samuk K, Uy FMK, Sheehan MJ (2020) Evolutionary dynamics of recent selection on cognitive abilities. Proc Natl Acad Sci 117(6):3045–3052. https://doi.org/10.1073/pnas.1918592117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreira AC, Carneiro RL, Fracola MF, Micocci KC, Bueno OC, Souza DH (2020) Analysis of the gene expression and RNAi-mediated knockdown of chitin synthase from leaf-cutting ant Atta sexdens. J Braz Chem Soc 31:1979–1990

    CAS  Google Scholar 

  • Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, Hartsough K, Machemer L, Radka S, Jadhav V, Vaish N, Zinnen S, Vargeese C, Bowman K, Shaffer CS, Jeffs LB, Judge A, MacLachlan I, Polisky B (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23(8):1002–1007. https://doi.org/10.1038/nbt1122

    Article  CAS  PubMed  Google Scholar 

  • Nelson CM, Ihle KE, Fondrk MK, Page RE Jr, Amdam GV (2007) The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biol 5(3):e62

    Article  PubMed  PubMed Central  Google Scholar 

  • Nunes FM, Aleixo AC, Barchuk AR, Bomtorin AD, Grozinger CM, Simões ZL (2013) Non-target effects of green fluorescent protein (GFP)-derived double-stranded RNA (dsRNA-GFP) used in honey bee RNA interference (RNAi) assays. Insects 4(1):90–103

    Article  PubMed  PubMed Central  Google Scholar 

  • Nunes FMF, Ihle KE, Mutti NS, Simões ZLP, Amdam GV (2013) The gene vitellogenin affects microRNA regulation in honey bee (Apis mellifera) fat body and brain. J Exp Biol 216(19):3724–3732. https://doi.org/10.1242/jeb.089243

    Article  CAS  PubMed  Google Scholar 

  • Phillips G (2001) Green fluorescent protein – a bright idea for the study of bacterial protein localization. FEMS Microbiol Lett 204(1):9–18. https://doi.org/10.1016/S0378-1097(01)00358-5

    Article  CAS  PubMed  Google Scholar 

  • R Core Team. (2020). R: A Language and Environment for Statistical Computing (4.0.3).

  • Rajakumar R, Koch S, Couture M, Favé M-J, Lillico-Ouachour A, Chen T, De Blasis G, Rajakumar A, Ouellette D, Abouheif E (2018) Social regulation of a rudimentary organ generates complex worker-caste systems in ants. Nature 562(7728):574–577

    Article  CAS  PubMed  Google Scholar 

  • Ratzka C, Gross R, Feldhaar H (2013) Systemic gene knockdown in Camponotus floridanus workers by feeding of dsRNA. Insectes Soc 60(4):475–484

    Article  Google Scholar 

  • Rein J, Mustard JA, Strauch M, Smith BH, Galizia CG (2013) Octopamine modulates activity of neural networks in the honey bee antennal lobe. J Comp Physiol A 199(11):947–962. https://doi.org/10.1007/s00359-013-0805-y

    Article  CAS  Google Scholar 

  • Revelle, W. (2021). Psych: Procedures for psychological, psychometric, and personality research (Version R package version 2.1. 3): Northwestern University, Evanston, Illinois.

  • Richards MH (2019) Vitellogenin and vitellogenin-like genes: Not just for egg production. Insectes Soc 66(4):505–506

    Article  Google Scholar 

  • Scharf ME, Zhou X, Schwinghammer MA (2008) Application of RNA interference in functional genomics studies of a social insect. In RNAi (pp. 205–229). Springer.

  • Schlüns H, Crozier RH (2007) Relish regulates expression of antimicrobial peptide genes in the honeybee, Apis mellifera, shown by RNA interference. Insect Mol Biol 16(6):753–759

    Article  PubMed  Google Scholar 

  • Schooler J (2011) Unpublished results hide the decline effect. Nature, 470(7335), 437–437. https://doi.org/10.1038/470437a

  • Seehuus S-C, Norberg K, Krekling T, Fondrk K, Amdam GV (2007) Immunogold localization of vitellogenin in the ovaries, hypopharyngeal glands and head fat bodies of honeybee workers, Apis mellifera. J Insect Sci 7(1):52

    PubMed  PubMed Central  Google Scholar 

  • Sun Z-X, Kang K, Cai Y-J, Zhang J-Q, Zhai Y-F, Zeng R-S, Zhang W-Q (2018) Transcriptional regulation of the vitellogenin gene through a fecundity-related single nucleotide polymorphism within a GATA-1 binding motif in the brown planthopper, Nilaparvata lugens: A SNP modulates vitellogenin gene transcription. Insect Mol Biol 27(3):365–372. https://doi.org/10.1111/imb.12378

    Article  CAS  PubMed  Google Scholar 

  • Toth AL, Bilof KBJ, Henshaw MT, Hunt JH, Robinson GE (2009) Lipid stores, ovary development, and brain gene expression in Polistes metricus females. Insectes Soc 56(1):77–84

    Article  Google Scholar 

  • Tumulty JP, Miller SE, Van Belleghem SM, Weller HI, Jernigan CM, Vincent S, Staudenraus RJ, Legan AW, Polnaszek TJ, Uy FMK, Walton A, Sheehan MJ (2021) Evidence for a selective link between cooperation and individual recognition [Preprint]. Animal Behavior and Cognition. https://doi.org/10.1101/2021.09.07.459327

    Article  Google Scholar 

  • Uy FMK, Jernigan CM, Zaba NC, Mehrotra E, Miller SE, Sheehan MJ (2021) Dynamic neurogenomic responses to social interactions and dominance outcomes in female paper wasps. PLOS Genetics, 17(9), e1009474. https://doi.org/10.1371/journal.pgen.1009474

  • Walton A, Sheehan MJ, Toth AL (2020) Going wild for functional genomics: RNA interference as a tool to study gene-behavior associations in diverse species and ecological contexts. Hormones and Behavior, 124:104774. https://doi.org/10.1016/j.yhbeh.2020.104774

  • Walton A, Toth AL (2021) Resource limitation, intra-group aggression and brain neuropeptide expression in a social wasp. Funct Ecol 35(10):2241–2252. https://doi.org/10.1111/1365-2435.13895

    Article  CAS  Google Scholar 

  • Wang L (1993) Planned versus Unplanned Contrasts: Exactly Why Planned Contrasts Tend To Have More Power against Type II Error.

  • Weiner SA, Geffre AG, Toth AL (2018) Functional genomics in the wild: a case study with paper wasps shows challenges and prospects for RNA interference in ecological systems. Genome 61(4):266–272

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Zheng Y, Li-Byarlay H, Shi Y, Wang S, Zheng H, Hu F (2020) CYP6AS8, a cytochrome P450, is associated with the 10-HDA biosynthesis in honey bee (Apis mellifera) workers. Apidologie 51(6):1202–1212. https://doi.org/10.1007/s13592-019-00709-5

    Article  CAS  Google Scholar 

  • Xia H, Mao Q, Paulson HL, Davidson BL (2002) SiRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 20(10):1006–1010

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Oi FM, Scharf ME (2006) Social exploitation of hexamerin: RNAi reveals a major caste-regulatory factor in termites. Proc Natl Acad Sci 103(12):4499–4504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Tarver MR, Bennett GW, Oi FM, Scharf ME (2006) Two hexamerin genes from the termite Reticulitermes flavipes: Sequence, expression, and proposed functions in caste regulation. Gene 376(1):47–58

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Wheeler MM, Oi FM, Scharf ME (2008) RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA. Insect Biochem Mol Biol 38(8):805–815. https://doi.org/10.1016/j.ibmb.2008.05.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jessica Riojas-Schnier and Maria Bellows for help with animal care; Ian Traniello, Amy Cash-Ahmed, and Fabio Manfredini for input on RNAi methods; Nick Howell of the Iowa State University Horticulture Research Station and Doug Sheeley of Polk County Conservation for providing space for wasp boxes; Tianna Tanasichuk for help with analyses; and the members of the Toth Lab for comments on an early version of the manuscript. This work was funded by the NSF EDGE Program Grant #1827567 awarded to ALT and MJS.

Author information

Authors and Affiliations

Authors

Contributions

AW, ALT, MJS, and AG designed the research; AW and RF collected and dissected wasp samples; AW and AG performed RNAi experiments; AW and EF carried out sample processing and molecular lab work; AW analyzed the data; AW and ALT wrote the manuscript; ALT and MJS acquired funding and supervised the research.

Corresponding author

Correspondence to A. Walton.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 537 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walton, A., Flores, E., Guinness, A. et al. A practical approach to RNA interference for studying gene function in a refractory social insect (on a limited budget). Insect. Soc. 70, 213–224 (2023). https://doi.org/10.1007/s00040-023-00910-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-023-00910-x

Keywords

Navigation