Skip to main content
Log in

A new highly nonlinear shallow water wave equation

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We derive a quasilinear shallow water equation directly from the governing equations for gravity water waves within a certain regime for large-amplitude waves which has not been studied so far. Furthermore, we demonstrate local well-posedness of the corresponding Cauchy problem and finally discuss some aspects of the blowup behavior of solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benjamin T. B., Bona J. L., Mahoney J. J.: Model equations for long waves in nonlinear dispersive systems. Phil. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 227, 47–78 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  2. Camassa R., Holm D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Constantin Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis CBMS-NSF Regional Conference Series in Applied Mathematics 81, SIAM, Philadelphia (2011).

  4. Constantin A., Escher J.: Global Existence and Blow-up for a Shallow Water Equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci 26(4), 303–328 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Constantin A., Escher J.: Well-Posedness, Global Existence, and Blowup Phenomena for a Periodic Quasi-Linear Hyperbolic Equation. Comm. Pure Appl. Math. 61, 475–504 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Constantin A., Escher J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Constantin A., Ivanov R. I., Lenells J.: Inverse scattering transform for the Degasperis–Procesi equation. Nonlinearity 23, 2559–2575 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Constantin A., Johnson R. S.: On the Non-Dimensionalisation, Scaling and Resulting Interpretation of the Classical Governing Equations for Water Waves. J. Nonlinear Math. Phys. 15, 58–73 (2008)

    Article  MathSciNet  Google Scholar 

  9. Constantin A., Lannes D.: The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations. Arch. Rational Mech. Anal. 192, 165–186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Constantin A., McKean H. P.: A shallow water equation on the circle. Comm. Pure Appl. Math. 52, 949–982 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Degasperis A., Holm D. D., Hone A. N. W.: A new integrable equation with peakon solutions. Theor. Math. Phys. 133, 1463–1474 (2002)

    Article  MathSciNet  Google Scholar 

  12. Drazin P. G., Johnson R. S.: Solitons: an introduction. Cambridge Univ. Press, Cambridge (1990)

    MATH  Google Scholar 

  13. Degasperis A., Procesi M.: Asymptotic integrability In: Degasperis, A. and Gaeta, G. (eds.) Symmetry and Perturbation Theory, pp. 23–37. World Scientific, Singapore (1999).

  14. Escher J., Liu Y., Yin D.: Global weak solutions and blow-up structure for the Degasperis-Procesi equation. J. Funct. Analysis 192, 457–485 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fuchssteiner B., Fokas A. S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Physica D 4, 47–66 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ionescu-Kruse D.: Variational derivation of the Camassa–Holm shallow water equation. J. Nonlinear Math. Phys. 14, 303–312 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ivanov R. I.: On the Integrability of a Class of Nonlinear Dispersive Wave Equations. J. Nonlinear Math. Phys. 12, 462–468 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ivanov R. I.: Water waves and integrability. Philos. Trans. Roy. Soc. London A 365, 2267–2280 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Johnson R. S.: Camassa–Holm, Korteweg–de Vries and related models for water waves J. Fluid Mech. 455, 63–82 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Johnson R. S.: The Classical Problem of Water Waves: a Reservoir of Integrable and Nearly-Integrable Equations. J. Nonlinear Math. Phys. 10, 72–92 (2003)

    Article  MathSciNet  Google Scholar 

  21. Johnson R. S.: A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge Univ. Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  22. Kato T.: On the Korteweg–De Vries Equation. Manuscripta Math. 28, 89–100 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Kato Quasi-linear equations of evolution, with applications to partial differential equations In: Spectral Theory and Differential Equations, pp. 25-70. Springer Lecture Notes in Mathematics 448, Berlin (1975).

  24. Lannes D.: The Water Waves Problem: Mathematical Analysis and Asymptotics, American Math. Soc., Providence, RI (2013)

    Book  MATH  Google Scholar 

  25. Mutlubaş N. D.: Local well-posedness and wave breaking results for periodic solutions of a shallow water equation for waves of moderate amplitude. Nonlinear Anal. R. World Appl. 97, 145–154 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  27. Stein E.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Univ. Press, Princeton (1993)

    MATH  Google Scholar 

  28. T. Tao, Low-regularity global solutions to nonlinear dispersive equations In: Surveys in Analysis and Operator Theory, pp. 19–48, Proc. Centre Math. Appl. Austral. Nat. Univ. 40 (2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Quirchmayr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quirchmayr, R. A new highly nonlinear shallow water wave equation. J. Evol. Equ. 16, 539–567 (2016). https://doi.org/10.1007/s00028-015-0312-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-015-0312-4

Mathematics Subject Classification

Keywords

Navigation