Skip to main content
Log in

Flow intermittency, physico-chemistry and function of headwater streams in an Alpine glacial catchment

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Relatively little is known regarding the extent of intermittent streams or the general ecology of headwaters in alpine catchments with glacial influence. This study quantified the contribution of intermittent streams to the total length of the stream network along with an ecological assessment during spring-summer of headwater streams (higher than 1,900 m above sea level) in the Val Roseg, a high Alpine glacial catchment. Stream network mapping revealed that ca. 90 % (76.8 km) of the drainage network consisted of intermittent streams. Glacier-fed headwaters experienced diel surface flows in late spring and summer, most going dry during the night due to reduced glacial inputs. In contrast, groundwater-fed streams often went dry in summer with the contraction of groundwater and other subsurface inputs. A principal components analysis of physico-chemical characteristics revealed headwaters to be primarily glacial-fed (kryal), groundwater-fed (krenal), or having a mixed water source. Although quite variable, periphyton biomass reached high levels (ca. 40 mg m−2 chl-a, 10 g m−2 AFDM) by late spring in most headwaters. Organic matter in transport (seston) ranged from 0.03 to 0.09 mg L−1 mostly consisting of fine particulate organic matter (FPOM: 33–76 %). Hyporheic sediment respiration rates varied considerably, ranging from 0.005 to 0.126 mg O2 h−1 kg−1 sediment and primarily related to the amount of loosely attached organic matter. These results indicate that intermittent streams are predominant in alpine landscapes, comprising mostly 1st to 2nd order systems, and that ecosystem properties vary substantially among headwater streams likely in relation to annual/daily changes in flow and water source. Such headwaters may contribute strongly to the production, processing and transport of organic matter to downstream waters, especially in light of the expected increase in intermittent streams in alpine catchments experiencing rapid glacial recession.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acuna V, Tockner K (2010) The effects of alterations in temperature and flow regime on organic carbon dynamics in Mediterranean river networks. Glob Change Biol 16:2638–2650

    Google Scholar 

  • Acuna V, Giorgi A, Munoz I, Uehlinger U, Sabater S (2004) Flow extremes and benthic organic matter shape the metabolism of a headwater Mediterranean stream. Freshw Biol 49:960–971

    Article  Google Scholar 

  • Alexander RB, Boyer EW, Smith RA, Schwarz GE, Moore RB (2007) The role of headwater streams in downstream water quality. J Am Water Resour Assoc 43:41–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • APHA (1989) Standard methods for the examination of water and wastewater. American Public Health Association, Washington DC

    Google Scholar 

  • Arthington AH, Bernado JM, Ilheu M (2014) Temporary rivers: linking ecohydrology, ecological quality and reconciliation ecology. River Res Appl 30:1209–1215

    Article  Google Scholar 

  • Baker MA, Valett HM, Dahm CN (2000) Organic carbon supply and metabolism in a shallow groundwater ecosystem. Ecology 81:3133–3148

    Article  Google Scholar 

  • Battin T, Wille A, Psenner R, Richter A (2004) Large-scale environmental controls on microbial biofilms in high-alpine streams. Biogeosciences 1:159–171

    Article  CAS  Google Scholar 

  • Battin T, Kaplan LA, Findlay S, Hopkinson CS, Marti E, Packman AI, Newbold JD, Sabater F (2008) Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 1:95–100

    Article  CAS  Google Scholar 

  • Bernal S, Sabater F (2012) Changes in discharge and solute dynamics between hillslope and valley-bottom intermittent streams. Hydrol Earth Syst Sci 16:1595–1605

    Article  CAS  Google Scholar 

  • Biggs BJF, Smith RA, Duncan MJ (1999) Velocity and sediment disturbance of periphyton in headwater streams: biomass and metabolism. J North Am Benthol Soc 18:222–241

    Article  Google Scholar 

  • Bocchiola D (2014) Long term (1921–2011) hydrological regime of alpine catchments in Northern Italy. Adv Water Resour 70:51–64

    Article  Google Scholar 

  • Bott TL, Kaplan LA (1985) Bacterial biomass, metabolic state, and activity in stream sediments—relation to environmental variables and multiple assay comparisons. Appl Environ Microbiol 50:508–522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boulton AJ, Lake PS (1990) The ecology of two intermittent streams in Victoria, Australia. I. Multivariate analysis of physicochemical features. Freshw Biol 24:123–141

    Article  CAS  Google Scholar 

  • Boulton AJ, Lake PS (1992) Benthic organic matter and detritivorous macroinvertebrates in two intermittent streams in south-eastern Australia. Hydrobiologia 241:107–118

    Article  CAS  Google Scholar 

  • Boyer EW, Hornberger GM, Bencala KE, McKnight DM (1997) Response characteristics of DOC flushing in an alpine catchment. Hydrol Process 11:1635–1647

    Article  Google Scholar 

  • Bretschko G (1966) Untersuchungen zur Phosphatführung zentralalpiner Gletscherabflüsse. Archiv für Hydrobiologie 62:327–344

    CAS  Google Scholar 

  • Brown LE, Hannah DM (2008) Spatial heterogeneity of water temperature across an alpine river basin. Hydrol Process 22:954–967

    Article  Google Scholar 

  • Brown LE, Hannah DM, Milner AM (2003) Alpine stream habitat classification: an alternative approach incorporating the role of dynamic water source contributions. Arct Antarct Alp Res 35:313–322

    Article  Google Scholar 

  • Brown LE, Hannah DM, Milner AM (2007) Vulnerability of alpine stream biodiversity to shrinking glaciers and snowpacks. Glob Change Biol 13:958–966

    Article  Google Scholar 

  • Buttle JM, Boon S, Peters DL, Spence C, (Ilja) van Meerveld HJ, Whitfield PH (2012) An overview of temporary stream hydrology in Canada. Can Water Resour J 37:279–310

  • Comin FA, Williams WD (1994) Parched continents: our common future? In: Margalef R (ed) Limnology now a paradigm of planetary problems. Elsevier, Amsterdam, pp 473–527

  • Covich AP, Fritz SC, Lamb PJ, Marzolf RD, Matthews WJ, Poiani KA, Prepas EE, Richman MB, Winter TC (1997) Potential effects of climate change on aquatic ecosystems of the Great Plains of North America. Hydrol Process 11:993–1021

    Article  Google Scholar 

  • Cuffney TF, Wallace JB (1989) Discharge-export relationships in headwater streams -the influence of invertebrate manipulations and drought. J North Am Benthol Soc 8:331–341

    Article  Google Scholar 

  • Datry T, Larned ST, Tockner K (2014) Intermittent rivers: a challenge for freshwater ecology. Bioscience 64:229–235

    Article  Google Scholar 

  • Dieterich M, Anderson NH (1998) Dynamics of abiotic parameters, solute removal and sediment retention in summer-dry headwater streams of western Oregon. Hydrobiologia 379:1–15

    Article  Google Scholar 

  • Doering M, Uehlinger U, Tockner K (2013) Vertical hydrological exchange, and ecosystem properties and processes at to spatial scales along a floodplain river (Tagliamento, Italy). Freshw Sci 32:12–25

    Article  Google Scholar 

  • Donath U, Robinson CT (2001) Ecological characteristics of lake outlets in Alpine environments of the Swiss Alps. Archiv für Hydrobiologie 150:207–225

    CAS  Google Scholar 

  • Downes MT (1978) Improved hydrazine reduction method for automated-determination of low nitrate levels in freshwater. Water Res 12:673–675

    Article  CAS  Google Scholar 

  • Ebina J, Tsutsui T, Shirai T (1983) Simultaneous determination of total nitrogen and total phosphorus in water using peroxodisulfate oxidation. Water Res 17:1721–1726

    Article  CAS  Google Scholar 

  • Febria CM, Beddoes P, Fulthorpe RR, Williams DD (2012) Bacterial community dynamics in the hyporheic zone of an intermittent stream. ISME J 6:1078–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Findlay SEG, Sinsabaugh RL, Sobczak WV, Hoostal M (2003) Metabolic and structural response of hyporheic microbial communities to variations in supply of dissolved organic matter. Limnol Oceanogr 48:1608–1617

    Article  CAS  Google Scholar 

  • Fisher SG, Gray LJ, Grimm NB, Busch DE (1982) Temporal succession in a desert stream ecosystem following flash flooding. Ecol Monogr 52:93–110

    Article  CAS  Google Scholar 

  • Fountain AG (1996) Effect of snow and firn hydrology on the physical and chemical characteristics of glacial runoff. Hydrol Process 10:509–521

    Article  Google Scholar 

  • Fritz KM, Hagenbuch E, D’Amico E, Reif M, Wigington PJ, Leibowitz SG, Comeleo RL, Ebersole JL, Nadeau T (2013) Comparing the extent and permanence of headwater streams from two field surveys to values from hydrographic databases and maps. J Am Water Resour Assoc 49:867–882

    Article  Google Scholar 

  • Gasith A, Resh VH (1999) Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annu Rev Ecol Syst 30:51–81

    Article  Google Scholar 

  • Gordon ND, McMahon TA, Finlayson BL, Nathan RJ, MacMahon TA (1992) Stream hydrology: an introduction for ecologists. Wiley, Chichester

    Google Scholar 

  • Grimm NB, Fisher SG (1984) Exchange between interstitial and surface–water-implications for stream metabolism and nutrient cycling. Hydrobiologia 111:219–228

    Article  CAS  Google Scholar 

  • Gurtz ME, Tate CM (1988) Hydrologic influences on leaf decomposition in a channel and adjacent bank of a gallery forest stream. Am Midl Nat 120:11–21

    Article  Google Scholar 

  • Hargrave BT (1972) Aerobic decomposition of sediment and detritus as a function of particle surface-area and organic content. Limnol Oceanogr 17:583–593

    Article  CAS  Google Scholar 

  • Hedin LO (1990) Factors controlling sediment community respiration in woodland stream ecosystems. Oikos 57:94–105

    Article  Google Scholar 

  • Herbst GN (1980) Effects of burial on food value and consumption of leaf detritus by aquatic invertebrates in a lowland forest stream. Oikos 35:411–424

    Article  Google Scholar 

  • Heuer K, Brooks PD, Tonnessen KA (1999) Nitrogen dynamics in two high elevation catchments during spring snowmelt 1996, Rocky Mountains, Colorado. Hydrol Process 13:2203–2214

    Article  Google Scholar 

  • Hieber M (2002) Alpine streams: aspects of biocomplexity. Dissertation, ETH-Zürich, Zürich

  • Hieber M, Robinson CT, Uehlinger U, Ward JV (2002) Are alpine lake outlets less harsh than other alpine streams? Archiv für Hydrobiologie 154:199–223

    CAS  Google Scholar 

  • House HR, McKnight DM, Von Guerard P (1995) The influence of stream channel characteristics on streamflow and annual water budgets for lakes in Taylor Valley. Antarct J U S Rev 34:284–287

    Google Scholar 

  • Humphries P, Baldwin DS (2003) Drought and aquatic ecosystems: an introduction. Freshw Biol 48:1141–1146

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. Cambridge University Press, Cambridge

    Google Scholar 

  • Johannessen MT, Dale ET, Gjessing A, Henriksen A, Wright RF (1977) Acid precipitation in Norway: the regional distribution of contaminants in snow and the chemical concentration processes during snowmelt. In: Proceedings of the international symposium on isotopes and impurities in snow and ice, international association of hydro-logical sciences, IAHS, pp 116–120

  • Jones JB (1995) Factors controlling hyporheic respiration in a desert stream. Freshw Biol 34:91–99

    Article  Google Scholar 

  • Jones JB, Fisher SG, Grimm NB (1995) Vertical hydrologic exchange and ecosystem metabolism in a Sonoran Desert stream. Ecology 76:942–952

    Article  Google Scholar 

  • Khamis K, Hannah DM, Hill Clarvis M, Brown LE, Castella E, Milner AM (2014) Alpine aquatic ecosystem conservation policy in a changing climate. Environ Sci Policy 43:39–55

    Article  Google Scholar 

  • King DK, Cummins KW (1989) Factors affecting autotrophic-heterotrophic relationships of a woodland stream. J Freshw Ecol 5:15–26

    Google Scholar 

  • Lake PS (2000) Disturbance, patchiness, and diversity in streams. J North Am Benthol Soc 19:573–592

    Article  Google Scholar 

  • Lake PS (2003) Ecological effects of perturbation by drought in flowing waters. Freshw Biol 48:1161–1172

    Article  Google Scholar 

  • Langston G, Bentley LR, Hayashi M, McClymont A, Pidlisecky A (2011) Internal structure and hydrological functions of an alpine proglacial moraine. Hydrol Process 25:2967–2982

    Google Scholar 

  • Larned ST, Datry T, Robinson CT (2007) Invertebrate and microbial responses to inundation in an ephemeral river reach in New Zealand: effects of preceding dry periods. Aquat Sci 69:554–567

    Article  Google Scholar 

  • Larned ST, Datry T, Arscott DB, Tockner K (2010) Emerging concepts in temporary-river ecology. Freshw Biol 55:717–738

    Article  Google Scholar 

  • Lencioni V, Marziali L, Rossaro B (2012) Chironomids as bioindicators of environmental qualtiy in mountain springs. Freshw Sci 31:525–541

    Article  Google Scholar 

  • Logue AB, Robinson CT, Meier C, Van der Meer JR (2004) Relationship between sediment organic matter, bacteria composition, and the ecosystem metabolism of alpine streams. Limnol Oceanogr 49:2001–2010

    Article  Google Scholar 

  • Magnusson J, Kobierska F, Huxol S, Hayashi M, Jonas T, Kirchner JW (2014) Melt water driven stream and groundwater stage fluctuations on a glacier forfield (Dammagletscher, Switzerland). Hydrol Process 28:823–836

    Article  Google Scholar 

  • Malard F (2003) Groundwater-surface water interactions. In: Ward JV, Uehlinger U (eds) Ecology of a glacial floodplain. Kluwer Academic Publishers, Dordrecht, pp 37–56

  • Malard F, Tockner K, Ward JV (1999) Shifting dominance of subcatchment water sources and flow paths in a glacial floodplain, Val Roseg, Switzerland. Arct Antarct Alp Res 31:135–150

    Article  Google Scholar 

  • Malard F, Tockner K, Ward JV (2000) Physico-chemical heterogeneity in a glacial riverscape. Landscape Ecol 15:679–695

    Article  Google Scholar 

  • Malard F, Uehlinger U, Zah R, Tockner K (2005) Flood-pulse and riverscape dynamics in a braided glacial river. Ecology 87:704–716

    Article  Google Scholar 

  • Matthews WJ (1988) North American prairie streams as systems for ecological study. J N Am Benthol Soc 7:387–409

    Article  Google Scholar 

  • Metzler GM, Smock LA (1990) Storage and dynamics of subsurface detritus in a sand-bottomed stream. Can J Fish Aquat Sci 47:588–594

    Article  Google Scholar 

  • Meyer A, Meyer EI, Meyer C (2003) Lotic communities of two small temporary karstic stream systems (East Westphalia, Germany) along a longitudinal gradient of hydrological intermittency. Limnologica 33:271–279

    Article  Google Scholar 

  • Meyer JL, Strayer DL, Wallace JB, Eggert SL, Helfman GS, Leonard NE (2007) The contribution of headwater streams to biodiversity in river networks. J Am Water Resour Assoc 43:86–103

    Article  Google Scholar 

  • Meyns S, Illi R, Ribi B (1994) Comparison of chlorophyll-a analysis by HPLC and spectrophotometry: where do the differences come from? Archiv für Hydrobiologie 132:129–139

    CAS  Google Scholar 

  • Milner AM, Petts GE (1994) Glacial rivers - physical habitat and ecology. Freshw Biol 32:295–307

    Article  Google Scholar 

  • Mosisch TD (2001) Effects of desiccation on stream epilithic algae. NZ J Mar Freshwat Res 35:173–179

    Article  Google Scholar 

  • Mueller MH, Weingartner R, Alewell C (2013) Importance of vegetation, topography and flow paths for water transit times of base flow in alpine headwater catchments. Hydrol Earth Syst Sci 17:1661–1679

    Article  Google Scholar 

  • Naegeli MW, Hartmann U, Meyer EI, Uehlinger U (1995) POM-dynamics and community respiration in the sediments of a floodprone prealpine river (Necker, Switzerland). Archiv für Hydrobiologie 133:339–347

    Google Scholar 

  • Naegeli MW, Huggenberger P, Uehlinger U (1996) Ground penetrating radar for assessing sediment structures in the hyporheic zone of a prealpine river. J North Am Benthol Soc 15:353–366

    Article  Google Scholar 

  • Niemi GJ, Devore P, Detenbeck N, Taylor D, Lima A, Pastor J, Yount JD, Naiman RJ (1990) Overview of case-studies on recovery of aquatic systems from disturbance. Environ Manage 14:571–587

    Article  Google Scholar 

  • Perrot D, Molotch NP, Williams MW, Jepsen SM, Sickman JO (2014) Relationships between stream nitrate concentration and spatially distributed snowmelt in high-elevation catchments of the western U.S. Water Resour Res 50:8694–8713

    Article  CAS  Google Scholar 

  • Peter H, Singer GA, Preiler C, Chifflard P, Steniczka G, Battin TJ (2014) Scales and drivers of temporal pCO2 dynamics in an Alpine stream. J Geophys Res Biogeosci 119:1078–1091

    Article  CAS  Google Scholar 

  • Peterson CG, Valett HM, Dahm CN (2001) Shifts in habitat templates for lotic microalgae linked to interannual variation in snowmelt intensity. Limnol Oceanogr 46:858–870

    Article  Google Scholar 

  • Politti E, Egger G, Angermann K, Rivaes R, Blamauer B, Klösch M, Trutthart M, Habersack H (2014) Evaluating cliamte change impacts on Alpine floodplain vegetation. Hydrobiologia 737:225–243

  • Pusch M (1996) The metabolism of organic matter in the hyporheic zone of a mountain stream, and its spatial distribution. Hydrobiologia 323:107–118

    Article  Google Scholar 

  • Pusch M, Schwoerbel J (1994) Community respiration in hyporheic sediments of a mountain stream (Steina, Black-Forest). Archiv für Hydrobiologie 130:35–52

    Google Scholar 

  • Reid LM, Ziemer RR (1994) Evaluating the biological significance of intermittent streams. USDA Forest Service, Pacific Southwest Research Station

  • Robinson CT, Matthaei S (2007) Hydrological heterogeneity of an Alpine stream/lake network in Switzerland. Hydrol Process 21:3146–3154

    Article  CAS  Google Scholar 

  • Robinson CT, Burgherr P, Malard F, Tockner K, Uehlinger U (2003) Synthesis and perspectives. In: Ward JV, Uehlinger U (eds) Ecology of a glacial flood plain. Kluwer Academic Publishers, Dordrecht, pp 257–269

  • Rocha LG, Medeiros ESF, Andrade HTA (2012) Influence of flow variability on macroinvertebrate assemblages in an intermittent stream of semi-arid Brazil. J Arid Environ 85:33–40

    Article  Google Scholar 

  • Rodier D (1996) L’analyse de l’Eau. Dunod, Paris

    Google Scholar 

  • Romani AM, Vazquez E, Butturini A (2006) Microbial availability and size fractionation of dissolved organic carbon after drought in an intermittent stream: biogeochemical link across the stream-riparian interface. Microb Ecol 52:501–512

    Article  CAS  PubMed  Google Scholar 

  • Röthlisberger H, Lang H (1987) Glacial hydrology. In: Clark MJ, Gurnell AM (eds) Glacio-fluvial sediment transfer: an alpine perspective. Wiley, Chichester, pp 207–284

  • Roy JW, Zaitlin B, Hayashi M, Watson SB (2011) Influence of groundwater spring discharge on small-scale spatial variation of an alpine stream ecosystem. Ecohydrology 4:661–670

    Article  Google Scholar 

  • Ruegg J, Robinson CT (2004) Comparison of macroinvertebrate assemblages of permanent and temporary streams in an Alpine floodplain, Switzerland. Archiv für Hydrobiologie 161:489–510

    Article  Google Scholar 

  • Rutter N, Hodson A, Irvine-Fynn T, Molas MK (2011) Hydrology and hydrochemistry of a deglaciating high-Arctic catchment, Svalbard. J Hydrol 410:39–50

    Article  CAS  Google Scholar 

  • Sertic Peric M, Jolidon C, Uehlinger U, Robinson CT (2015) Long-term ecological patterns of alpine streams: an imprint of glacial legacies. Limnol Oceanogr doi:10.1002/lno.2014.00.00.10069

  • Singer GA, Panzenbock M, Weigelhofer G, Marchesani C, Waringer J, Wanek W, Battin TJ (2005) Flow history explains temporal and spatial variation of carbon fractionation in stream periphyton. Limnol Oceanogr 50:706–712

    Article  CAS  Google Scholar 

  • Slemmons KEH, Saros JE, Simon K (2013) The influence of glacial meltwater on alpine aquatic ecosystems: a review. Environ Sci Process Impacts 15:1794–1806

    Article  CAS  PubMed  Google Scholar 

  • Smock LA (1990) Spatial and temporal variation in organic matter storage in low-gradient, headwater streams. Archiv für Hydrobiologie 118:169–184

    CAS  Google Scholar 

  • Stanley EH, Boulton AJ (1995) Hyporheic processes during flooding and drying in a Sonoran desert stream. 1. Hydrol Chem Dyn. Archiv für Hydrobiologie 134:1–26

    CAS  Google Scholar 

  • Stanley EH, Fisher SG, Grimm NB (1997) Ecosystem expansion and contraction in streams. Bioscience 47:427–435

    Article  Google Scholar 

  • Steinman AD, McIntire CD (1990) Recovery of lotic periphyton communities after disturbance. Environ Manage 14:589–604

    Article  Google Scholar 

  • Teeri J, Barrett PE (1977) Detrital transport by wind in an high arctic terrestrial ecosystem. Arct Antarct Alp Res 7:387–391

    Article  Google Scholar 

  • Tockner K, Malard F (2003) Channel typology. In: Ward JV, Uehlinger U (eds) Ecology of a glacial floodplain. Kluwer Academic Publishers, Dordrecht, pp 57–73

  • Tockner K, Malard F, Burgherr P, Robinson CT, Uehlinger U, Zah R, Ward JV (1997) Physico-chemical characterization of channel types in a glacial floodplain ecosystem (Val Roseg, Switzerland). Archiv für Hydrobiologie 140:433–463

    Google Scholar 

  • Tockner K, Malard F, Uehlinger U, Ward JV (2002) Nutrients and organic matter in a glacial river-floodplain system (Val Roseg, Switzerland). Limnol Oceanogr 47:266–277

    Article  CAS  Google Scholar 

  • Tonolla D, Acuna V, Uehlinger U, Frank T, Tockner K (2010) Thermal heterogeneity in river floodplains. Ecosystems 13:727–740

    Article  CAS  Google Scholar 

  • Tooth S (2000) Process, form and change in dryland rivers: a review of recent research. Earth Sci Rev 5:67–107

    Article  Google Scholar 

  • Uehlinger U (1991) Spatial and temporal variability of the periphyton biomass in a prealpine river (Necker, Switzerland). Archiv für Hydrobiologie 123:219–228

    Google Scholar 

  • Uehlinger U, Naegeli MW (1998) Ecosystem metabolism, disturbance, and stability in a prealpine gravel bed river. J N Am Benthol Soc 17:165–178

    Article  Google Scholar 

  • Uehlinger U, Bossard P, Bloesch J, Bürgi HP, Bührer H (1984) Ecological experiments in limnocorals: methodological problems and quantification of the epilimnetic phosphorus and carbon cycles. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 22:163–171

    CAS  Google Scholar 

  • Uehlinger U, Zah R, Buergi H (1998) The Val Roseg project: temporal and spatial patterns of benthic algae in an Alpine stream ecosystem influenced by glacier runoff. In: Kovar K, Tappeiner U, Peters NE, Graig RG (eds) Hydrology, water resources and ecology in headwaters. IAHS Press, Willingford, pp 419–424

  • Uehlinger U, Robinson CT, Hieber M, Zah R (2010) The physico-chemical habitat template for periphyton in alpine glacial streams under a changing climate. Hydrobiologia 657:107–121

    Article  CAS  Google Scholar 

  • Vidal-Abarca MR, Sanchez-Montoya MM, Guerrero C, Gomez R, Arce MI, Garcia-Garcia V, Suarez ML (2013) Effects of intermittent stream flow on macroinvertebrate community composition and biological traits in a naturally saline Mediterranean stream. J Arid Environ 99:28–40

    Article  Google Scholar 

  • Ward JV (1994) Ecology of alpine streams. Freshw Biol 32:277–294

    Article  Google Scholar 

  • Ward JV, Uehlinger U (eds) (2003) Ecology of a glacial flood plain. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Ward JV, Malard F, Tockner K, Uehlinger U (1999) Influence of ground water on surface water conditions in a glacial flood plain of the Swiss Alps. Hydrol Process 13:277–293

    Article  Google Scholar 

  • Yount JD, Niemi GJ (1990) Recovery of lotic communities and ecosystems from disturbance - A narrative review of case-studies. Environ Manage 14:547–569

    Article  Google Scholar 

  • Zah R, Uehlinger U (2001) Particulate organic matter inputs to a glacial stream ecosystem in the Swiss Alps. Freshw Biol 46:1597–1608

    Article  CAS  Google Scholar 

  • Zah R, Niederost M, Rinderspacher H, Uehlinger U, Ward JV (2001) Long-term dynamics of the channel network in a glacial floodplain, Val Roseg, Switzerland. Arct Antarct Alp Res 33:440–446

    Article  Google Scholar 

  • Zah R, Maisch M, Uehlinger U, Rothenbühler C (2003) Glacial history and floodplain evolution. In: Ward JV, Uehlinger U (eds) Ecology of a glacial floodplain. Kluwer Academic Publishers, Dordrecht, pp 17–36

  • Zar JH (1984) Biostatistical analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

Download references

Acknowledgments

Special thanks to Richard Illi for analysis of water samples, and Rosi Siber and Michael Döring for assistance in GIS. Thanks to Thekla Ackermann, Fabio Gandolfi, Janine Rüegg and Marlène Zbinden for their support in the field. We also thank The Federal Office of Topography (Swisstopo) for access to aerial images. Several anonymous reviews assisted in improving an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. T. Robinson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, C.T., Tonolla, D., Imhof, B. et al. Flow intermittency, physico-chemistry and function of headwater streams in an Alpine glacial catchment. Aquat Sci 78, 327–341 (2016). https://doi.org/10.1007/s00027-015-0434-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-015-0434-3

Keywords

Navigation