Skip to main content
Log in

Hydrodynamic Limit Equation for a Lozenge Tiling Glauber Dynamics

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We study a reversible continuous-time Markov dynamics on lozenge tilings of the plane, introduced by Luby et al. (SIAM J Comput 31:167–192, 2001). Single updates consist in concatenations of n elementary lozenge rotations at adjacent vertices. The dynamics can also be seen as a reversible stochastic interface evolution. When the update rate is chosen proportional to 1 / n, the dynamics is known to have special features: a certain Hamming distance between configurations contracts with time on average (Luby et al. in SIAM J Comput 31:167–192, 2001), and the relaxation time of the Markov chain is diffusive (Wilson in Ann Appl Probab 14:274–325, 2004), growing like the square of the diameter of the system. Here, we present another remarkable feature of this dynamics, namely we derive, in the diffusive timescale, a fully explicit hydrodynamic limit equation for the height function (in the form of a nonlinear parabolic PDE). While this equation cannot be written as a gradient flow w.r.t. a surface energy functional, it has nice analytic properties, for instance it contracts the \({\mathbb {L}}^2\) distance between solutions. The mobility coefficient \(\mu \) in the equation has non-trivial but explicit dependence on the interface slope and, interestingly, is directly related to the system’s surface free energy. The derivation of the hydrodynamic limit is not fully rigorous, in that it relies on an unproven assumption of local equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akutsu, Y., Akutsu, N., Yamamoto, T.: Universal jump of Gaussian curvature at the facet edge of a crystal. Phys. Rev. Lett. 61, 424–427 (1988)

    Article  ADS  Google Scholar 

  2. Caputo, P., Martinelli, F., Simenhaus, F., Toninelli, F.L.: Zero temperature stochastic 3D Ising model and dimer covering fluctuations: a first step towards interface mean curvature motion. Comm. Pure Appl. Math. 64, 778–831 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caputo, P., Martinelli, F., Toninelli, F.L.: Mixing times of monotone surfaces and SOS interfaces: a mean curvature approach. Comm. Math. Phys. 311, 157–189 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Chhita, S., Ferrari, P. L.: A Combinatorial Identity for the Speed of Growth in an Anisotropic KPZ Model. To appear on Ann. Inst. Henri Poincaré. arXiv:1508.01665

  5. Cohn, H., Kenyon, R., Propp, J.: A variational principle for domino tilings. J. Am. Math. Soc. 14, 297–346 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Funaki, T., Spohn, H.: Motion by mean curvature from the Ginzburg–Landau \(\nabla \phi \) interface model. Comm. Math. Phys. 85, 1–36 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Funaki, T.: Stochastic Interface Models. Lectures on Probability Theory and Statistics, pp. 103–274, Lecture Notes in Mathematics, 1869, Springer, Berlin (2005)

  8. Kenyon, R.: Lectures on Dimers. Statistical Mechanics, pp. 191–230, IAS/Park City Math. Ser., 16, Am. Math. Soc., Providence, RI (2009)

  9. Kenyon, R., Okounkov, A., Sheffield, S.: Dimers and amoebae. Ann. Math. 163, 1019–1056 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer, Berlin (1999)

  11. Laslier, B., Toninelli, F.L.: Lozenge tilings, Glauber dynamics and macroscopic shape. Comm. Math. Phys. 338, 1287–1326 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Laslier, B., Toninelli, F. L.: Lozenge tiling dynamics and convergence to the hydrodynamic equation. Work in progress

  13. Lieberman, G.M.: Second Order Parabolic Differential Equations. World Scientific, Singapore (1996)

  14. Luby, M., Randall, D., Sinclair, A.: Markov chain algorithms for planar lattice structures. SIAM J. Comput. 31, 167–192 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nishikawa, T.: Hydrodynamic limit for the Ginzburg–Landau \(\nabla \phi \) interface model with boundary conditions. Comm. Math. Phys. 127, 205–227 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Spohn, H.: Interface motion in models with stochastic dynamics. J. Stat. Phys. 71, 1081–1132 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, New York (1999)

    MATH  Google Scholar 

  18. Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991)

  19. Toninelli, F. L.: A (2+1)-dimensional growth process with explicit stationary measure. To appear on Ann. Probab. arXiv:1503.05339

  20. Wilson, D.B.: Mixing times of lozenge tiling and card shuffling Markov chains. Ann. Appl. Probab. 14, 274–325 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Lucio Toninelli.

Additional information

Communicated by Christian Maes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laslier, B., Toninelli, F.L. Hydrodynamic Limit Equation for a Lozenge Tiling Glauber Dynamics. Ann. Henri Poincaré 18, 2007–2043 (2017). https://doi.org/10.1007/s00023-016-0548-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-016-0548-8

Navigation