Skip to main content
Log in

Lozenge Tilings, Glauber Dynamics and Macroscopic Shape

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the Glauber dynamics on the set of tilings of a finite domain of the plane with lozenges of side 1/L. Under the invariant measure of the process (the uniform measure over all tilings), it is well known (Cohn et al. J Am Math Soc 14:297–346, 2001) that the random height function associated to the tiling converges in probability, in the scaling limit \({L {\to} {\infty}}\), to a non-trivial macroscopic shape minimizing a certain surface tension functional. According to the boundary conditions, the macroscopic shape can be either analytic or contain “frozen regions” (Arctic Circle phenomenon Cohn et al. N Y J Math 4:137–165, 1998; Jockusch et al. Random domino tilings and the arctic circle theorem, arXiv:math/9801068, 1998). It is widely conjectured, on the basis of theoretical considerations (Henley J Statist Phys 89:483–507, 1997; Spohn J Stat Phys 71:1081–1132, 1993), partial mathematical results (Caputo et al. Commun Math Phys 311:157–189, 2012; Wilson Ann Appl Probab 14:274–325, 2004) and numerical simulations for similar models (Destainville Phys Rev Lett 88:030601, 2002; cf. also the bibliography in Henley (J Statist Phys 89:483–507, 1997) and Wilson (Ann Appl Probab 14:274–325, 2004), that the Glauber dynamics approaches the equilibrium macroscopic shape in a time of order L 2+o(1). In this work we prove this conjecture, under the assumption that the macroscopic equilibrium shape contains no “frozen region”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caputo P., Martinelli F., Toninelli F.L.: Mixing times of monotone surfaces and SOS interfaces: a mean curvature approach. Commun. Math. Phys. 311, 157–189 (2012)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Caputo P., Martinelli F., Simenhaus F., Toninelli F.L.: “Zero” temperature stochastic 3D Ising model and dimer covering fluctuations: a first step towards interface mean curvature motion. Commun. Pure Appl. Math. 64, 778–831 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cohn H., Larsen M., Propp J.: The Shape of a Typical Boxed Plane Partition. N. Y. J. Math. 4, 137–165 (1998)

    MATH  MathSciNet  Google Scholar 

  4. Cohn H., Kenyon R., Propp J.: A variational principle for domino tilings. J. Am. Math. Soc. 14, 297–346 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Destainville N.: Flip dynamics in octagonal rhombus tiling sets. Phys. Rev. Lett. 88, 030601 (2002)

    Article  ADS  Google Scholar 

  6. Diaconis P., Saloff-Coste L.: Comparison theorems for reversible Markov chains. Ann. Appl. Probab. 3, 696–730 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Giaquinta, M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems. In: Ann. Math. Studies, vol. 105. Princeton Univ. Press, NJ (1983)

  8. Gordon W.B.: On the Diffeomorphisms of Euclidean space. Am. Math. Mon. 79, 755–759 (1972)

    Article  MATH  Google Scholar 

  9. Hadamard, J.: Sur les tranformations ponctuelles. Bull. Soc. Math. France 34, (1906) 71–94. (Oeuvres, pp. 349–363 and pp. 383–384)

  10. Henley C.L.: Relaxation time for a dimer covering with height representation. J. Statist. Phys. 89, 483–507 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Jockusch, W., Propp, J., Shor, P.: Random domino tilings and the arctic circle theorem (1998). arXiv:math/9801068

  12. Kenyon R.: Conformal invariance of domino tiling. Ann. Probab. 28, 759–795 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kenyon R., Okounkov A., Sheffield S.: Dimers and amoebae. Ann. Math. 163, 1019–1056 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kenyon R., Propp J., Wilson D.B.: Trees and matchings. Elec. J. Comb. 7, R25 (2000)

    MathSciNet  Google Scholar 

  15. Lacoin H., Simenhaus F., Toninelli F.L.: Zero-temperature 2D ising model and anisotropic curve-shortening flow. J. Eur. Math. Soc. 16, 2557–2615 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lacoin, H., Simenhaus, F., Toninelli, F.L.: The heat equation shrinks Ising droplets to points. Commun. Pure Appl. Math. (2015). doi:10.1002/cpa.21533

  17. Laslier, B., Toninelli, F.L.: How quickly can we sample a uniform domino tiling of the 2L × 2L square via Glauber dynamics? Probab. Theory Relat. Fields. 161(3–4), 509–559 (2015)

  18. Luby M., Randall D., Sinclair A.: Markov Chain Algorithms for Planar Lattice Structures. SIAM J. Comput. 31, 167–192 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mucha M., Sankowski P.: Maximum matchings in planar graphs via Gaussian elimination. Algorithmica 45, 3–20 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Petrov L.: Asymptotics of Random Lozenge Tilings via Gelfand–Tsetlin Schemes. Prob. Theory Rel. Fields 160(3), 429487 (2014)

    Google Scholar 

  21. Petrov L.: Asymptotics of Uniformly Random Lozenge Tilings of Polygons. Gaussian Free Field. Ann. Probab. 43(1), 143 (2014)

    Google Scholar 

  22. Spohn H.: Interface motion in models with stochastic dynamics. J. Stat. Phys. 71, 1081–1132 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Randall D., Tetali P.: Analyzing Glauber dynamics by comp arison of Markov chains. J. Math. Phys. 41, 1598–1615 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Wilson D.B.: Mixing times of Lozenge tiling and card shuffling Markov chains. Ann. Appl. Probab. 14, 274–325 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wilson, D.B.: Generating random spanning trees more quickly than the cover time. In: Proc. of the 28th Annual ACM Symposium on Theory of Computing (STOC’96), pp. 296–303

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Lucio Toninelli.

Additional information

Communicated by L. Erdös

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laslier, B., Toninelli, F.L. Lozenge Tilings, Glauber Dynamics and Macroscopic Shape. Commun. Math. Phys. 338, 1287–1326 (2015). https://doi.org/10.1007/s00220-015-2396-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2396-7

Keywords

Navigation