Skip to main content

Advertisement

Log in

Apelin/APJ system: an emerging therapeutic target for respiratory diseases

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Apelin is an endogenous ligand of G protein-coupled receptor APJ. It is extensively expressed in many tissues such as heart, liver, and kidney, especially in lung tissue. A growing body of evidence suggests that apelin/APJ system is closely related to the development of respiratory diseases. Therefore, in this review, we focus on the role of apelin/APJ system in respiratory diseases, including pulmonary arterial hypertension (PAH), pulmonary embolism (PE), acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), obstructive sleep apnoea syndrome (OSAS), non-small cell lung cancer (NSCLC), pulmonary edema, asthma, and chronic obstructive pulmonary diseases. In detail, apelin/APJ system attenuates PAH by activating AMPK-KLF2-eNOS-NO signaling and miR424/503-FGF axis. Also, apelin protects against ALI/ARDS by reducing mitochondrial ROS-triggered oxidative damage, mitochondria apoptosis, and inflammatory responses induced by the activation of NF-κB and NLRP3 inflammasome. Apelin/APJ system also prevents the occurrence of pulmonary edema via activating AKT-NOS3-NO pathway. Moreover, apelin/APJ system accelerates NSCLC cells’ proliferation and migration via triggering ERK1/2–cyclin D1 and PAK1–cofilin signaling, respectively. Additionally, apelin/APJ system may act as a predictor in the development of OSAS and PE. Considering the pleiotropic actions of apelin/APJ system, targeting apelin/APJ system may be a potent therapeutic avenue for respiratory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. O'Dowd BF, Heiber M, Chan A, Heng HH, Tsui LC, Kennedy JL, Shi X, Petronis A, George SR, Nguyen T (1993) A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene 136(1–2):355–360

    Article  CAS  Google Scholar 

  2. Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, Zou MX, Kawamata Y, Fukusumi S, Hinuma S, Kitada C, Kurokawa T, Onda H, Fujino M (1998) Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun 251(2):471–476. https://doi.org/10.1006/bbrc.1998.9489

    Article  CAS  PubMed  Google Scholar 

  3. Medhurst AD, Jennings CA, Robbins MJ, Davis RP, Ellis C, Winborn KY, Lawrie KW, Hervieu G, Riley G, Bolaky JE, Herrity NC, Murdock P, Darker JG (2003) Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand apelin. J Neurochem 84(5):1162–1172

    Article  CAS  Google Scholar 

  4. Cano Martinez LJ, Coral Vazquez RM, Mendez JP, Trejo S, Perez Razo JC, Canto P (2018) Serum concentrations of apelin-17 isoform vary in accordance to blood pressure categories in individuals with obesity class 3. Clin Exp Hypertens. https://doi.org/10.1080/10641963.2018.1462374

    Article  PubMed  Google Scholar 

  5. Xie F, Lv D, Chen L (2014) ELABELA: a novel hormone in cardiac development acting as a new endogenous ligand for the APJ receptor. Acta Biochim Biophys Sin (Shanghai) 46(7):620–622. https://doi.org/10.1093/abbs/gmu032

    Article  Google Scholar 

  6. Pauli A, Norris ML, Valen E, Chew GL, Gagnon JA, Zimmerman S, Mitchell A, Ma J, Dubrulle J, Reyon D, Tsai SQ, Joung JK, Saghatelian A, Schier AF (2014) Toddler: an embryonic signal that promotes cell movement via Apelin receptors. Science 343(6172):1248636. https://doi.org/10.1126/science.1248636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lu L, Wu D, Li L, Chen L (2017) Apelin/APJ system: a bifunctional target for cardiac hypertrophy. Int J Cardiol 230:164–170. https://doi.org/10.1016/j.ijcard.2016.11.215

    Article  PubMed  Google Scholar 

  8. O'Carroll AM, Lolait SJ, Harris LE, Pope GR (2013) The apelin receptor APJ: journey from an orphan to a multifaceted regulator of homeostasis. J Endocrinol 219(1):R13–35. https://doi.org/10.1530/JOE-13-0227

    Article  CAS  PubMed  Google Scholar 

  9. Bai B, Tang J, Liu H, Chen J, Li Y, Song W (2008) Apelin-13 induces ERK1/2 but not p38 MAPK activation through coupling of the human apelin receptor to the Gi2 pathway. Acta Biochim Biophys Sin (Shanghai) 40(4):311–318. https://doi.org/10.1111/j.1745-7270.2008.00403.x

    Article  CAS  Google Scholar 

  10. D'Aniello C, Lonardo E, Iaconis S, Guardiola O, Liguoro AM, Liguori GL, Autiero M, Carmeliet P, Minchiotti G (2009) G protein-coupled receptor APJ and its ligand apelin act downstream of Cripto to specify embryonic stem cells toward the cardiac lineage through extracellular signal-regulated kinase/p70S6 kinase signaling pathway. Circ Res 105(3):231–238. https://doi.org/10.1161/CIRCRESAHA.109.201186

    Article  CAS  PubMed  Google Scholar 

  11. Scimia MC, Hurtado C, Ray S, Metzler S, Wei K, Wang J, Woods CE, Purcell NH, Catalucci D, Akasaka T, Bueno OF, Vlasuk GP, Kaliman P, Bodmer R, Smith LH, Ashley E, Mercola M, Brown JH, Ruiz-Lozano P (2012) APJ acts as a dual receptor in cardiac hypertrophy. Nature 488(7411):394–398. https://doi.org/10.1038/nature11263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bai B, Jiang Y, Cai X, Chen J (2014) Dynamics of apelin receptor/G protein coupling in living cells. Exp Cell Res 328(2):401–409. https://doi.org/10.1016/j.yexcr.2014.08.035

    Article  CAS  PubMed  Google Scholar 

  13. Zhou Q, Xu J, Liu M, He L, Zhang K, Yang Y, Yang X, Zhou H, Tang M, Lu L, Chen Z, Chen L, Li L (2019) Warburg effect is involved in apelin-13-induced human aortic vascular smooth muscle cells proliferation. J Cell Physiol. https://doi.org/10.1002/jcp.28218

    Article  PubMed  PubMed Central  Google Scholar 

  14. Xie F, Liu W, Feng F, Li X, He L, Lv D, Qin X, Li L, Li L, Chen L (2015) Apelin-13 promotes cardiomyocyte hypertrophy via PI3K-Akt-ERK1/2-p70S6K and PI3K-induced autophagy. Acta Biochim Biophys Sin (Shanghai) 47(12):969–980. https://doi.org/10.1093/abbs/gmv111

    Article  CAS  Google Scholar 

  15. Liu MQ, Chen Z, Chen LX (2016) Endoplasmic reticulum stress: a novel mechanism and therapeutic target for cardiovascular diseases. Acta Pharmacol Sin 37(4):425–443. https://doi.org/10.1038/aps.2015.145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang H, Chen S, Zeng M, Lin D, Wang Y, Wen X, Xu C, Yang L, Fan X, Gong Y, Zhang H, Kong X (2018) Apelin-13 administration protects against LPS-induced acute lung injury by inhibiting NF-kappaB pathway and NLRP3 inflammasome activation. Cell Physiol Biochem 49(5):1918–1932. https://doi.org/10.1159/000493653

    Article  CAS  PubMed  Google Scholar 

  17. Liu M, Li H, Zhou Q, Zhao H, Lv D, Cao J, Jiang J, Tang M, Wu D, Liu J, Wu L, Hu H, He L, Huang S, Chen Z, Li L, Chen L (2018) ROS-Autophagy pathway mediates monocytes-human umbilical vein endothelial cells adhesion induced by apelin-13. J Cell Physiol 233(10):6839–6850. https://doi.org/10.1002/jcp.26554

    Article  CAS  PubMed  Google Scholar 

  18. Ureche C, Tapoi L, Volovat S, Voroneanu L, Kanbay M, Covic A (2019) Cardioprotective apelin effects and the cardiac-renal axis: review of existing science and potential therapeutic applications of synthetic and native regulated apelin. J Hum Hypertens. https://doi.org/10.1038/s41371-019-0163-5

    Article  PubMed  Google Scholar 

  19. Besserer-Offroy E, Berube P, Cote J, Murza A, Longpre JM, Dumaine R, Lesur O, Auger-Messier M, Leduc R, Marsault E, Sarret P (2018) The hypotensive effect of activated apelin receptor is correlated with beta-arrestin recruitment. Pharmacol Res 131:7–16. https://doi.org/10.1016/j.phrs.2018.02.032

    Article  CAS  PubMed  Google Scholar 

  20. Furuya M, Okuda M, Usui H, Takenouchi T, Kami D, Nozawa A, Shozu M, Umezawa A, Takahashi T, Aoki I (2012) Expression of angiotensin II receptor-like 1 in the placentas of pregnancy-induced hypertension. Int J Gynecol Pathol 31(3):227–235. https://doi.org/10.1097/PGP.0b013e31823b6e71

    Article  CAS  PubMed  Google Scholar 

  21. Najafipour H, Soltani Hekmat A, Nekooian AA, Esmaeili-Mahani S (2012) Apelin receptor expression in ischemic and non- ischemic kidneys and cardiovascular responses to apelin in chronic two-kidney-one-clip hypertension in rats. Regul Pept 178(1–3):43–50. https://doi.org/10.1016/j.regpep.2012.06.006

    Article  CAS  PubMed  Google Scholar 

  22. Zhou Q, Chen L, Tang M, Guo Y, Li L (2018) Apelin/APJ system: a novel promising target for anti-aging intervention. Clin Chim Acta 487:233–240. https://doi.org/10.1016/j.cca.2018.10.011

    Article  CAS  PubMed  Google Scholar 

  23. Vinel C, Lukjanenko L, Batut A, Deleruyelle S, Pradere JP, Le Gonidec S, Dortignac A, Geoffre N, Pereira O, Karaz S, Lee U, Camus M, Chaoui K, Mouisel E, Bigot A, Mouly V, Vigneau M, Pagano AF, Chopard A, Pillard F, Guyonnet S, Cesari M, Burlet-Schiltz O, Pahor M, Feige JN, Vellas B, Valet P, Dray C (2018) The exerkine apelin reverses age-associated sarcopenia. Nat Med 24(9):1360–1371. https://doi.org/10.1038/s41591-018-0131-6

    Article  CAS  PubMed  Google Scholar 

  24. Ji W, Shi H, Shen H, Kong J, Song J, Bian H, Lv X (2019) Mechanism of KLF4 protection against acute liver injury via inhibition of apelin signaling. Oxid Med Cell Longevity 2019:6140360. https://doi.org/10.1155/2019/6140360

    Article  CAS  Google Scholar 

  25. Huang Z, Wu L, Chen L (2018) Apelin/APJ system: a novel potential therapy target for kidney disease. J Cell Physiol 233(5):3892–3900. https://doi.org/10.1002/jcp.26144

    Article  CAS  PubMed  Google Scholar 

  26. He S, Li J, Wang J, Zhang Y (2019) Hypoxia exposure alleviates impaired muscular metabolism, glucose tolerance, and aerobic capacity in apelin-knockout mice. FEBS Open Bio 9(3):498–509. https://doi.org/10.1002/2211-5463.12587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Andersen CU, Markvardsen LH, Hilberg O, Simonsen U (2009) Pulmonary apelin levels and effects in rats with hypoxic pulmonary hypertension. Respir Med 103(11):1663–1671. https://doi.org/10.1016/j.rmed.2009.05.011

    Article  CAS  PubMed  Google Scholar 

  28. Seyedabadi M, Goodchild AK, Pilowsky PM (2002) Site-specific effects of apelin-13 in the rat medulla oblongata on arterial pressure and respiration. Auton Neurosci 101(1–2):32–38

    Article  CAS  Google Scholar 

  29. Zhang H, Gong Y, Wang Z, Jiang L, Chen R, Fan X, Zhu H, Han L, Li X, Xiao J, Kong X (2014) Apelin inhibits the proliferation and migration of rat PASMCs via the activation of PI3K/Akt/mTOR signal and the inhibition of autophagy under hypoxia. J Cell Mol Med 18(3):542–553. https://doi.org/10.1111/jcmm.12208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hosoya M, Kawamata Y, Fukusumi S, Fujii R, Habata Y, Hinuma S, Kitada C, Honda S, Kurokawa T, Onda H, Nishimura O, Fujino M (2000) Molecular and functional characteristics of APJ. Tissue distribution of mRNA and interaction with the endogenous ligand apelin. J Biol Chem 275(28):21061–21067. https://doi.org/10.1074/jbc.M908417199

    Article  CAS  PubMed  Google Scholar 

  31. O'Carroll AM, Selby TL, Palkovits M, Lolait SJ (2000) Distribution of mRNA encoding B78/apj, the rat homologue of the human APJ receptor, and its endogenous ligand apelin in brain and peripheral tissues. Biochim Biophys Acta 1492(1):72–80

    Article  CAS  Google Scholar 

  32. Kawamata Y, Habata Y, Fukusumi S, Hosoya M, Fujii R, Hinuma S, Nishizawa N, Kitada C, Onda H, Nishimura O, Fujino M (2001) Molecular properties of apelin: tissue distribution and receptor binding. Biochim Biophys Acta 1538(2–3):162–171

    Article  CAS  Google Scholar 

  33. Kleinz MJ, Davenport AP (2004) Immunocytochemical localization of the endogenous vasoactive peptide apelin to human vascular and endocardial endothelial cells. Regul Pept 118(3):119–125. https://doi.org/10.1016/j.regpep.2003.11.002

    Article  CAS  PubMed  Google Scholar 

  34. Goetze JP, Rehfeld JF, Carlsen J, Videbaek R, Andersen CB, Boesgaard S, Friis-Hansen L (2006) Apelin: a new plasma marker of cardiopulmonary disease. Regul Pept 133(1–3):134–138. https://doi.org/10.1016/j.regpep.2005.09.032

    Article  CAS  PubMed  Google Scholar 

  35. Baek HS, Kim YD, Shin JH, Kim JH, Oh JW, Lee HB (2011) Serum leptin and adiponectin levels correlate with exercise-induced bronchoconstriction in children with asthma. Ann Allergy Asthma Immunol 107(1):14–21. https://doi.org/10.1016/j.anai.2011.03.013

    Article  CAS  PubMed  Google Scholar 

  36. Hofmann AD, Friedmacher F, Takahashi H, Hunziker M, Gosemann JH, Puri P (2014) Decreased apelin and apelin-receptor expression in the pulmonary vasculature of nitrofen-induced congenital diaphragmatic hernia. Pediatr Surg Int 30(2):197–203. https://doi.org/10.1007/s00383-013-3450-1

    Article  PubMed  Google Scholar 

  37. Fan XF, Xue F, Zhang YQ, Xing XP, Liu H, Mao SZ, Kong XX, Gao YQ, Liu SF, Gong YS (2015) The apelin–APJ axis is an endogenous counterinjury mechanism in experimental acute lung injury. Chest 147(4):969–978. https://doi.org/10.1378/chest.14-1426

    Article  PubMed  Google Scholar 

  38. Andersen CU, Hilberg O, Mellemkjaer S, Nielsen-Kudsk JE, Simonsen U (2011) Apelin and pulmonary hypertension. Pulm Circ 1(3):334–346. https://doi.org/10.4103/2045-8932.87299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Samareh Fekri M, Etminan A, Rashidnedjad A, Mojibian A, Masoomi Y (2018) Serum apelin peptide level in hemodialysis patients with pulmonary arterial hypertension. Iran J Kidney Dis 12(4):209–214

    PubMed  Google Scholar 

  40. Li Y, Ren W, Wang X, Yu X, Cui L, Li X, Zhang X, Shi B (2019) MicroRNA-150 relieves vascular remodeling and fibrosis in hypoxia-induced pulmonary hypertension. Biomed Pharmacother 109:1740–1749. https://doi.org/10.1016/j.biopha.2018.11.058

    Article  CAS  PubMed  Google Scholar 

  41. Ikeda KT, Hale PT, Pauciulo MW, Dasgupta N, Pastura PA, Le Cras TD, Pandey MK, Nichols WC (2018) Hypoxia-induced pulmonary hypertension in different mouse strains—relation to transcriptome. Am J Respir Cell Mol Biol. https://doi.org/10.1165/rcmb.2017-0435OC

    Article  Google Scholar 

  42. Sheikh AY, Chun HJ, Glassford AJ, Kundu RK, Kutschka I, Ardigo D, Hendry SL, Wagner RA, Chen MM, Ali ZA, Yue P, Huynh DT, Connolly AJ, Pelletier MP, Tsao PS, Robbins RC, Quertermous T (2008) In vivo genetic profiling and cellular localization of apelin reveals a hypoxia-sensitive, endothelial-centered pathway activated in ischemic heart failure. Am J Physiol Heart Circ Physiol 294(1):H88–98. https://doi.org/10.1152/ajpheart.00935.2007

    Article  CAS  PubMed  Google Scholar 

  43. Chandra SM, Razavi H, Kim J, Agrawal R, Kundu RK, de Jesus PV, Zamanian RT, Quertermous T, Chun HJ (2011) Disruption of the apelin-APJ system worsens hypoxia-induced pulmonary hypertension. Arterioscler Thromb Vasc Biol 31(4):814–820. https://doi.org/10.1161/ATVBAHA.110.219980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Soon E, Southwood M, Sheares K, Pepke-Zaba J, Morrell NW (2014) Better off blue: BMPR-2 mutation, arteriovenous malformation, and pulmonary arterial hypertension. Am J Respir Crit Care Med 189(11):1435–1436. https://doi.org/10.1164/rccm.201311-2019IM

    Article  PubMed  Google Scholar 

  45. Braam EA, Quanjel MJ, Van Haren-Willems JH, Van Oosterhout MF, Vink A, Heijdra YF, Kwakkel-van Erp JM (2016) Extensive pulmonary sarcoid reaction in a patient with BMPR-2 associated idiopathic pulmonary arterial hypertension. Sarcoidosis Vasc Diffuse Lung Dis 33(2):182–185

    PubMed  Google Scholar 

  46. Hautefort A, Mendes-Ferreira P, Sabourin J, Manaud G, Bertero T, Rucker-Martin C, Riou M, Adao R, Manoury B, Lambert M, Boet A, Lecerf F, Domergue V, Bras-Silva C, Gomez AM, Montani D, Girerd B, Humbert M, Antigny F, Perros F (2019) Bmpr2 mutant rats develop pulmonary and cardiac characteristics of pulmonary arterial hypertension. Circulation 139(7):932–948. https://doi.org/10.1161/CIRCULATIONAHA.118.033744

    Article  CAS  PubMed  Google Scholar 

  47. Alastalo TP, Li M, Perez Vde J, Pham D, Sawada H, Wang JK, Koskenvuo M, Wang L, Freeman BA, Chang HY, Rabinovitch M (2011) Disruption of PPARgamma/beta-catenin-mediated regulation of apelin impairs BMP-induced mouse and human pulmonary arterial EC survival. J Clin Investig 121(9):3735–3746. https://doi.org/10.1172/JCI43382

    Article  CAS  PubMed  Google Scholar 

  48. D'Amico RW, Faley S, Shim HN, Prosser JR, Agrawal V, Bellan LM, West JD (2018) Pulmonary vascular platform models the effects of flow and pressure on endothelial dysfunction in BMPR2 associated pulmonary arterial hypertension. Int J Mol Sci. https://doi.org/10.3390/ijms19092561

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ozkan M, Dweik RA, Laskowski D, Arroliga AC, Erzurum SC (2001) High levels of nitric oxide in individuals with pulmonary hypertension receiving epoprostenol therapy. Lung 179(4):233–243. https://doi.org/10.1007/s004080000064

    Article  CAS  PubMed  Google Scholar 

  50. Albarran-Juarez J, Iring A, Wang S, Joseph S, Grimm M, Strilic B, Wettschureck N, Althoff TF, Offermanns S (2018) Piezo1 and Gq/G11 promote endothelial inflammation depending on flow pattern and integrin activation. J Exp Med 215(10):2655–2672. https://doi.org/10.1084/jem.20180483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McLean DL, Kim J, Kang Y, Shi H, Atkins GB, Jain MK, Chun HJ (2012) Apelin/APJ signaling is a critical regulator of statin effects in vascular endothelial cells—brief report. Arterioscler Thromb Vasc Biol 32(11):2640–2643. https://doi.org/10.1161/ATVBAHA.112.300317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang X, Wu Z, He Y, Zhang H, Tian L, Zheng C, Shang T, Zhu Q, Li D, He Y (2018) Humanin prevents high glucose-induced monocyte adhesion to endothelial cells by targeting KLF2. Mol Immunol 101:245–250. https://doi.org/10.1016/j.molimm.2018.07.008

    Article  CAS  PubMed  Google Scholar 

  53. Young A, Wu W, Sun W, Benjamin Larman H, Wang N, Li YS, Shyy JY, Chien S, Garcia-Cardena G (2009) Flow activation of AMP-activated protein kinase in vascular endothelium leads to Kruppel-like factor 2 expression. Arterioscler Thromb Vasc Biol 29(11):1902–1908. https://doi.org/10.1161/ATVBAHA.109.193540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zippel N, Loot AE, Stingl H, Randriamboavonjy V, Fleming I, Fisslthaler B (2018) Endothelial AMP-activated kinase alpha1 phosphorylates eNOS on Thr495 and decreases endothelial NO formation. Int J Mol Sci. https://doi.org/10.3390/ijms19092753

    Article  PubMed  PubMed Central  Google Scholar 

  55. He L, Zhou Q, Huang Z, Xu J, Zhou H, Lv D, Lu L, Huang S, Tang M, Zhong J, Chen JX, Luo X, Li L, Chen L (2019) PINK1/parkin-mediated mitophagy promotes apelin-13-induced vascular smooth muscle cell proliferation by AMPKalpha and exacerbates atherosclerotic lesions. J Cell Physiol 234(6):8668–8682. https://doi.org/10.1002/jcp.27527

    Article  CAS  PubMed  Google Scholar 

  56. Zhu G, Zhang W, Liu Y, Wang S (2018) miR371b5p inhibits endothelial cell apoptosis in monocrotalineinduced pulmonary arterial hypertension via PTEN/PI3K/Akt signaling pathways. Mol Med Rep 18(6):5489–5501. https://doi.org/10.3892/mmr.2018.9614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim J, Kang Y, Kojima Y, Lighthouse JK, Hu X, Aldred MA, McLean DL, Park H, Comhair SA, Greif DM, Erzurum SC, Chun HJ (2013) An endothelial apelin-FGF link mediated by miR-424 and miR-503 is disrupted in pulmonary arterial hypertension. Nat Med 19(1):74–82. https://doi.org/10.1038/nm.3040

    Article  CAS  PubMed  Google Scholar 

  58. Bertero T, Lu Y, Annis S, Hale A, Bhat B, Saggar R, Saggar R, Wallace WD, Ross DJ, Vargas SO, Graham BB, Kumar R, Black SM, Fratz S, Fineman JR, West JD, Haley KJ, Waxman AB, Chau BN, Cottrill KA, Chan SY (2014) Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension. J Clin Investig 124(8):3514–3528. https://doi.org/10.1172/JCI74773

    Article  CAS  PubMed  Google Scholar 

  59. Yamamoto T (2018) Management of patients with high-risk pulmonary embolism: a narrative review. J Intensive Care 6:16. https://doi.org/10.1186/s40560-018-0286-8

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tang M, Huang Z, Luo X, Liu M, Wang L, Qi Z, Huang S, Zhong J, Chen JX, Li L, Wu D, Chen L (2019) Ferritinophagy activation and sideroflexin1-dependent mitochondria iron overload is involved in apelin-13-induced cardiomyocytes hypertrophy. Free Radic Biol Med 134:445–457. https://doi.org/10.1016/j.freeradbiomed.2019.01.052

    Article  CAS  PubMed  Google Scholar 

  61. Celik Y, Yardan T, Baydin A, Demircan S (2016) The role of NT-proBNP and Apelin in the assessment of right ventricular dysfunction in acute pulmonary embolism. J Pak Med Assoc 66(3):306–311

    PubMed  Google Scholar 

  62. Selimoglu Sen H, Kaplan I, Abakay O, Sezgi C, Yilmaz S, Taylan M, Abakay A, Tanrikulu AC (2016) Serum apelin 13 levels in patients with pulmonary embolism. Clin Appl Thromb Hemost 22(6):543–547. https://doi.org/10.1177/1076029615572467

    Article  CAS  PubMed  Google Scholar 

  63. Feng JH, Li WM, Wu XP, Tan XY, Gao YH, Han CL, Li SQ, Xie HN (2010) Hemodynamic effect of apelin in a canine model of acute pulmonary thromboembolism. Peptides 31(9):1772–1778. https://doi.org/10.1016/j.peptides.2010.06.004

    Article  CAS  PubMed  Google Scholar 

  64. Maguire JJ, Kleinz MJ, Pitkin SL, Davenport AP (2009) [Pyr1]apelin-13 identified as the predominant apelin isoform in the human heart: vasoactive mechanisms and inotropic action in disease. Hypertension 54(3):598–604. https://doi.org/10.1161/HYPERTENSIONAHA.109.134619

    Article  CAS  PubMed  Google Scholar 

  65. Lee JH, Kim S, Park BK, Kim WS, Kim DS, Kim WD, Lee SD (2005) The effect of a combination of inhaled nitric oxide and an endothelinA-receptor antagonist on hemodynamic dysfunction in experimental acute pulmonary thromboembolism. Lung 183(2):139–149

    Article  CAS  Google Scholar 

  66. Mughal A, Sun C, O'Rourke ST (2018) Apelin reduces nitric oxide-induced relaxation of cerebral arteries by inhibiting activation of large-conductance, calcium-activated K channels. J Cardiovasc Pharmacol 71(4):223–232. https://doi.org/10.1097/FJC.0000000000000563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dalzell JR, Rocchiccioli JP, Weir RA, Jackson CE, Padmanabhan N, Gardner RS, Petrie MC, McMurray JJ (2015) The emerging potential of the apelin–APJ system in heart failure. J Card Fail 21(6):489–498. https://doi.org/10.1016/j.cardfail.2015.03.007

    Article  CAS  PubMed  Google Scholar 

  68. Cheng J, Luo X, Huang Z, Chen L (2018) Apelin/APJ system: a potential therapeutic target for endothelial dysfunction-related diseases. J Cell Physiol. https://doi.org/10.1002/jcp.27942

    Article  PubMed  Google Scholar 

  69. Kurowska P, Barbe A, Rozycka M, Chmielinska J, Dupont J, Rak A (2018) Apelin in reproductive physiology and pathology of different species: a critical review. Int J Endocrinol 2018:9170480. https://doi.org/10.1155/2018/9170480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bertrand C, Pradere JP, Geoffre N, Deleruyelle S, Masri B, Personnaz J, Le Gonidec S, Batut A, Louche K, Moro C, Valet P, Castan-Laurell I (2018) Chronic apelin treatment improves hepatic lipid metabolism in obese and insulin-resistant mice by an indirect mechanism. Endocrine 60(1):112–121. https://doi.org/10.1007/s12020-018-1536-1

    Article  CAS  PubMed  Google Scholar 

  71. Ge Y, Li Y, Chen Q, Zhu W, Zuo L, Guo Z, Gong J, Cao L, Gu L, Li J (2018) Adipokine apelin ameliorates chronic colitis in Il-10(−/−) mice by promoting intestinal lymphatic functions. Biochem Pharmacol 148:202–212. https://doi.org/10.1016/j.bcp.2018.01.011

    Article  CAS  PubMed  Google Scholar 

  72. Vafaee F (2016) Using multi-objective optimization to identify dynamical network biomarkers as early-warning signals of complex diseases. Sci Rep 6:22023. https://doi.org/10.1038/srep22023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ju YS, Zangrilli MA, Finn MB, Fagan AM, Holtzman DM (2019) Obstructive sleep apnea treatment, slow wave activity, and amyloid-beta. Ann Neurol 85(2):291–295. https://doi.org/10.1002/ana.25408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Heinonen I, Vuolteenaho O, Koskenvuo J, Arjamaa O, Nikinmaa M (2017) Systemic hypoxia increases circulating concentration of apelin in humans. High Alt Med Biol 18(3):292–295. https://doi.org/10.1089/ham.2017.0017

    Article  CAS  PubMed  Google Scholar 

  75. Henley DE, Buchanan F, Gibson R, Douthwaite JA, Wood SA, Woltersdorf WW, Catterall JR, Lightman SL (2009) Plasma apelin levels in obstructive sleep apnea and the effect of continuous positive airway pressure therapy. J Endocrinol 203(1):181–188. https://doi.org/10.1677/JOE-09-0245

    Article  CAS  PubMed  Google Scholar 

  76. Zirlik S, Hauck T, Fuchs FS, Neurath MF, Konturek PC, Harsch IA (2011) Leptin, obestatin and apelin levels in patients with obstructive sleep apnoea syndrome. Med Sci Monit 17(3):CR159–CR164

    Article  CAS  Google Scholar 

  77. Nizam N, Basoglu OK, Tasbakan MS, Lappin DF, Buduneli N (2016) Is there an association between obstructive sleep apnea syndrome and periodontal inflammation? Clin Oral Investig 20(4):659–668. https://doi.org/10.1007/s00784-015-1544-y

    Article  CAS  PubMed  Google Scholar 

  78. Ming H, Tian A, Liu B, Hu Y, Liu C, Chen R, Cheng L (2019) Inflammatory cytokines tumor necrosis factor-alpha, interleukin-8 and sleep monitoring in patients with obstructive sleep apnea syndrome. Exp Ther Med 17(3):1766–1770. https://doi.org/10.3892/etm.2018.7110

    Article  CAS  PubMed  Google Scholar 

  79. Jiang YQ, Xue JS, Xu J, Zhou ZX, Ji YL (2017) Efficacy of continuous positive airway pressure treatment in treating obstructive sleep apnea hypopnea syndrome associated with carotid arteriosclerosis. Exp Ther Med 14(6):6176–6182. https://doi.org/10.3892/etm.2017.5308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Masoumi J, Abbasloui M, Parvan R, Mohammadnejad D, Pavon-Djavid G, Barzegari A, Abdolalizadeh J (2018) Apelin, a promising target for Alzheimer disease prevention and treatment. Neuropeptides 70:76–86. https://doi.org/10.1016/j.npep.2018.05.008

    Article  CAS  PubMed  Google Scholar 

  81. Augustin HG, Koh GY (2017) Organotypic vasculature: from descriptive heterogeneity to functional pathophysiology. Science. https://doi.org/10.1126/science.aal2379

    Article  PubMed  Google Scholar 

  82. Antushevich H, Wojcik M (2018) Review: apelin in disease. Clin Chim Acta 483:241–248. https://doi.org/10.1016/j.cca.2018.05.012

    Article  CAS  PubMed  Google Scholar 

  83. Zhao H, Tian X, He L, Li Y, Pu W, Liu Q, Tang J, Wu J, Cheng X, Liu Y, Zhou Q, Tan Z, Bai F, Xu F, Smart N, Zhou B (2018) Apj(+) vessels drive tumor growth and represent a tractable therapeutic target. Cell Rep 25(5):1241–1254. https://doi.org/10.1016/j.celrep.2018.10.015(e1245)

    Article  CAS  PubMed  Google Scholar 

  84. Rayalam S, Della-Fera MA, Kasser T, Warren W, Baile CA (2011) Emerging role of apelin as a therapeutic target in cancer: a patent review. Recent Pat Anticancer Drug Discov 6(3):367–372. https://doi.org/10.2174/157489211796957856

    Article  CAS  PubMed  Google Scholar 

  85. Lv D, Li L, Lu Q, Li Y, Xie F, Li H, Cao J, Liu M, Wu D, He L, Chen L (2016) PAK1-cofilin phosphorylation mediates human lung adenocarcinoma cells migration induced by apelin-13. Clin Exp Pharmacol Physiol 43(5):569–579. https://doi.org/10.1111/1440-1681.12563

    Article  CAS  PubMed  Google Scholar 

  86. Berta J, Kenessey I, Dobos J, Tovari J, Klepetko W, Jan Ankersmit H, Hegedus B, Renyi-Vamos F, Varga J, Lorincz Z, Paku S, Ostoros G, Rozsas A, Timar J, Dome B (2010) Apelin expression in human non-small cell lung cancer: role in angiogenesis and prognosis. J Thorac Oncol 5(8):1120–1129. https://doi.org/10.1097/JTO.0b013e3181e2c1ff

    Article  PubMed  Google Scholar 

  87. Ermin S, Cok G, Veral A, Kose T (2016) The role of apelin in the assessment of response to chemotherapyand prognosis in stage 4 nonsmall cell lung cancer. Turk J Med Sci 46(5):1353–1359. https://doi.org/10.3906/sag-1411-9

    Article  CAS  PubMed  Google Scholar 

  88. Yang S, Chen X, Pan Y, Yu J, Li X, Ma S (2016) Proteins associated with EGFR-TKIs resistance in patients with non-small cell lung cancer revealed by mass spectrometry. Mol Med Rep 14(5):4823–4829. https://doi.org/10.3892/mmr.2016.5823

    Article  CAS  PubMed  Google Scholar 

  89. Yang L, Su T, Lv D, Xie F, Liu W, Cao J, Sheikh IA, Qin X, Li L, Chen L (2014) ERK1/2 mediates lung adenocarcinoma cell proliferation and autophagy induced by apelin-13. Acta Biochim Biophys Sin (Shanghai) 46(2):100–111. https://doi.org/10.1093/abbs/gmt140

    Article  CAS  Google Scholar 

  90. Jang I, Jeon BT, Jeong EA, Kim EJ, Kang D, Lee JS, Jeong BG, Kim JH, Choi BH, Lee JE, Kim JW, Choi JY, Roh GS (2012) Pak1/LIMK1/cofilin pathway contributes to tumor migration and invasion in human non-small cell lung carcinomas and cell lines. Korean J Physiol Pharmacol 16(3):159–165. https://doi.org/10.4196/kjpp.2012.16.3.159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mishra A, Kohli S, Dua S, Thinlas T, Mohammad G, Pasha MA (2015) Genetic differences and aberrant methylation in the apelin system predict the risk of high-altitude pulmonary edema. Proc Natl Acad Sci USA 112(19):6134–6139. https://doi.org/10.1073/pnas.1422759112

    Article  CAS  PubMed  Google Scholar 

  92. Miller CN, Dye JA, Schladweiler MC, Richards JH, Ledbetter AD, Stewart EJ, Kodavanti UP (2018) Acute inhalation of ozone induces DNA methylation of apelin in lungs of Long-Evans rats. Inhal Toxicol 30(4–5):178–186. https://doi.org/10.1080/08958378.2018.1483984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Machura E, Ziora K, Ziora D, Swietochowska E, Krakowczyk H, Halkiewicz F, Kasperska-Zajac A (2013) Serum apelin-12 level is elevated in schoolchildren with atopic asthma. Respir Med 107(2):196–201. https://doi.org/10.1016/j.rmed.2012.10.026

    Article  PubMed  Google Scholar 

  94. Jin G, Chen Z, Zhang J, Song J, Shi J, Zhou B (2018) Association of brain natriuretic peptide gene polymorphisms with chronic obstructive pulmonary disease complicated with pulmonary hypertension and its mechanism. Biosci Rep. https://doi.org/10.1042/BSR20180905

    Article  PubMed  PubMed Central  Google Scholar 

  95. Huang Z, He L, Chen Z, Chen L (2018) Targeting drugs to APJ receptor: from signaling to pathophysiological effects. J Cell Physiol 234(1):61–74. https://doi.org/10.1002/jcp.27047

    Article  CAS  PubMed  Google Scholar 

  96. Yokoyama Y, Sekiguchi A, Fujiwara C, Uchiyama A, Uehara A, Ogino S, Torii R, Ishikawa O, Motegi SI (2018) Inhibitory regulation of skin fibrosis in systemic sclerosis by apelin/APJ signaling. Arthritis Rheumatol 70(10):1661–1672. https://doi.org/10.1002/art.40533

    Article  CAS  PubMed  Google Scholar 

  97. Iturrioz X, Alvear-Perez R, De Mota N, Franchet C, Guillier F, Leroux V, Dabire H, Le Jouan M, Chabane H, Gerbier R, Bonnet D, Berdeaux A, Maigret B, Galzi JL, Hibert M, Llorens-Cortes C (2010) Identification and pharmacological properties of E339–3D6, the first nonpeptidic apelin receptor agonist. FASEB J 24(5):1506–1517. https://doi.org/10.1096/fj.09-140715

    Article  CAS  PubMed  Google Scholar 

  98. Margathe JF, Iturrioz X, Alvear-Perez R, Marsol C, Riche S, Chabane H, Tounsi N, Kuhry M, Heissler D, Hibert M, Llorens-Cortes C, Bonnet D (2014) Structure–activity relationship studies toward the discovery of selective apelin receptor agonists. J Med Chem 57(7):2908–2919. https://doi.org/10.1021/jm401789v

    Article  CAS  PubMed  Google Scholar 

  99. Khan P, Maloney PR, Hedrick M, Gosalia P, Milewski M, Li L, Roth GP, Sergienko E, Suyama E, Sugarman E, Nguyen K, Mehta A, Vasile S, Su Y, Shi S, Stonich D, Nguyen H, Zeng FY, Novo AM, Vicchiarelli M, Diwan J, Chung TDY, Pinkerton AB, Smith LH (2010) Functional agonists of the apelin (APJ) receptor. In: Probe reports from the NIH molecular libraries program. National Center for Biotechnology Information, Bethesda (MD)

    Google Scholar 

  100. Zhou N, Fang J, Acheampong E, Mukhtar M, Pomerantz RJ (2003) Binding of ALX40-4C to APJ, a CNS-based receptor, inhibits its utilization as a co-receptor by HIV-1. Virology 312(1):196–203

    Article  CAS  Google Scholar 

  101. Lee DK, Saldivia VR, Nguyen T, Cheng R, George SR, O'Dowd BF (2005) Modification of the terminal residue of apelin-13 antagonizes its hypotensive action. Endocrinology 146(1):231–236. https://doi.org/10.1210/en.2004-0359

    Article  CAS  PubMed  Google Scholar 

  102. Zhou L, Sun H, Cheng R, Fan X, Lai S, Deng C (2019) ELABELA, as a potential diagnostic biomarker of pre-eclampsia, regulates abnormally shallow placentation via APJ. Am J Physiol Endocrinol Metab. https://doi.org/10.1152/ajpendo.00383.2018

    Article  PubMed  Google Scholar 

  103. Cheng L, Zhao Y, Qi D, Li W, Wang D (2018) Wnt/beta-catenin pathway promotes acute lung injury induced by LPS through driving the Th17 response in mice. Biochem Biophys Res Commun 495(2):1890–1895. https://doi.org/10.1016/j.bbrc.2017.12.058

    Article  CAS  PubMed  Google Scholar 

  104. Guo Y, Mishra A, Howland E, Zhao C, Shukla D, Weng T, Liu L (2015) Platelet-derived Wnt antagonist Dickkopf-1 is implicated in ICAM-1/VCAM-1-mediated neutrophilic acute lung inflammation. Blood 126(19):2220–2229. https://doi.org/10.1182/blood-2015-02-622233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Han XF, Zhang XX, Liu KM, Zhang Q (2018) Apelin-13 deficiency alters cortical bone geometry, organic bone matrix, and inhibits Wnt/beta-catenin signaling. Gen Comp Endocrinol 267:29–35. https://doi.org/10.1016/j.ygcen.2018.05.024

    Article  CAS  PubMed  Google Scholar 

  106. Chen QX, Song SW, Chen QH, Zeng CL, Zheng X, Wang JL, Fang XM (2014) Silencing airway epithelial cell-derived hepcidin exacerbates sepsis induced acute lung injury. Crit Care 18(4):470. https://doi.org/10.1186/s13054-014-0470-8

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The study was supported by Grants from the National Natural Science Foundation of China (81603108) and Hunan Provincial Natural Science Foundation (2019JJ80063).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangang Cao or Linxi Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Wang, A., Cao, J. et al. Apelin/APJ system: an emerging therapeutic target for respiratory diseases. Cell. Mol. Life Sci. 77, 2919–2930 (2020). https://doi.org/10.1007/s00018-020-03461-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03461-7

Keywords

Navigation